We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cytokines Induced by Exposure to Airborne Pollutants Drive the Transition from Acute to Chronic Lung Infections

By LabMedica International staff writers
Posted on 28 Aug 2013
Print article
Image: This photomicrograph depicts airway epithelial cells from lung tissue of a COPD patient. The cell nuclei have been stained to reveal IL-33, a type of signaling molecule found at high levels in COPD patients. New research shows that viral infection can induce these cells to proliferate. Release of IL-33 from these cells promotes inflammatory mucus production. These findings provide insight into the mechanisms linking acute infection to chronic inflammatory lung disease (Photo courtesy of Holtzman Lab, Washington University School of Medicine).
Image: This photomicrograph depicts airway epithelial cells from lung tissue of a COPD patient. The cell nuclei have been stained to reveal IL-33, a type of signaling molecule found at high levels in COPD patients. New research shows that viral infection can induce these cells to proliferate. Release of IL-33 from these cells promotes inflammatory mucus production. These findings provide insight into the mechanisms linking acute infection to chronic inflammatory lung disease (Photo courtesy of Holtzman Lab, Washington University School of Medicine).
Molecular signaling molecules that link acute viral infections with the development of chronic diseases such as chronic obstructive pulmonary disease (COPD) have been identified in a mouse model and in human patient samples.

COPD is considered to be the fifth leading cause of death worldwide. It is characterized by inflammation of the lower airways and destruction of lung tissue that limit airflow and pulmonary function. While exposure to cigarette smoke is a major risk factor for COPD, response to viral infection by cells lining the airways can lead to the long-term lung inflammation and mucus production that are typical of COPD.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) had shown previously in mice with parainfluenza virus infection that innate immune cells played an unexpected role in interleukin-13 (IL-13)–dependent chronic lung disease. However, it was not known how IL-13 activity was modulated.

In the current report, the investigators demonstrated that lung levels of IL-33 were selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe COPD. IL-33 is a cytokine belonging to the IL-1 superfamily that induces helper T-cells, mast cells, eosinophils, and basophils to produce type II cytokines. IL-33 mediates its biological effects by interacting with the receptors ST2 (IL1RL1) and IL-1 Receptor Accessory Protein (IL1RAP), activating intracellular molecules in the NF-kappaB and MAP kinase signaling pathways that drive production of type II cytokines (e.g. IL-5 and IL-13) from polarized Th2 cells. The induction of type II cytokines by IL-33 in vivo is believed to induce the severe pathological changes observed in mucosal organs following administration of IL-33.

In humans with COPD, IL-33 gene expression was also associated with IL-13 and mucin gene expression, and IL-33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33.

“From this work, we now know that a respiratory viral infection leads to an increase in lung epithelial progenitor cells that are programmed for increased production of IL-33,” said senior author Dr. Michael J. Holtzman, professor of medicine at Washington University School of Medicine. “We also provided the initial evidence that an additional stress or danger, such as smoking or pollution or even another infection, could cause these cells to release IL-33, which then stimulates immune cells to produce IL-13 and in turn the airway mucus typical of COPD and related respiratory diseases. It is also possible that smoke exposure predisposes individuals to the development of these cells and, in turn, the susceptibility to exacerbation and progression of this type of disease.”

“The innate immune response is conventionally viewed as built for short- rather than long-term activation,” said Dr. Holtzman. “So the type of pathway that we identified was thought to be activated for only short periods of time. However, we found that it could be persistently activated after viral infection and became even more active with time.”

The study was published in the August 15, 2013, online edition of the Journal of Clinical Investigation.

Related Links:
Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: ColoSense is the first FDA-approved RNA-based molecular screening test for qualitative detection of colorectal cancer (Photo courtesy of Geneoscopy)

RNA-Powered Molecular Test to Help Combat Early-Age Onset Colorectal Cancer

Colorectal cancer (CRC) ranks as the second most lethal cancer in the United States. Nevertheless, many Americans eligible for screening do not undergo testing due to limited access or reluctance towards... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more