We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Disrupted Micronuclei Cited as Potential Non-Small-Cell Lung Cancer Biomarkers

By LabMedica International staff writers
Posted on 16 Jul 2013
Print article
Cancer researchers have found that collapse of the nuclear membrane that surrounds micronuclei—bits of the genome that become detached during cell replication—may allow these damaged segments of DNA to reenter the cell's genetic material with possible cancer-causing consequences.

Investigators at the Salk Institute for Biological Sciences (La Jolla, CA, USA) worked with cultures of non-small-cell lung cancer (NSCLC) cells. They reported in the July 3, 2013, issue of the journal Cell that micronuclei, which were sometimes generated when these cells replicated, had reduced functioning compared to primary nuclei in the same cell, although the two compartments appeared to be structurally comparable. Over 60% of micronuclei were found to undergo an irreversible loss of compartmentalization during interphase due to collapse of their nuclear envelope.

The disruption of the micronuclei, which was induced by defects in nuclear lamina assembly, drastically reduced nuclear functions and had the potential to trigger massive DNA damage. Disruption of micronuclei was associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin.

Disrupted micronuclei were detected in both major subtypes of NSCLC, suggesting that this feature could be a useful objective biomarker for genomic instability in solid tumors.

"Our study shows that more than 60% of micronuclei undergo catastrophic dysfunction in solid tumors such as NSCLC," said senior author Dr. Martin Hetzer, professor of molecular and cell biology at the Salk Institute for Biological Sciences. "We identified disrupted micronuclei in two major subtypes of human non-small-cell lung cancer, which suggests that they could be a valuable tool for cancer diagnosis."

Related Links:
Salk Institute for Biological Sciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more