We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Microscope Enables Direct Mass Spectrometry Analysis

By LabMedica International staff writers
Posted on 07 May 2013
Print article
Image: The iMScope –  Shimadzu’s novel imaging mass microscope (Photo courtesy of Shimadzu).
Image: The iMScope – Shimadzu’s novel imaging mass microscope (Photo courtesy of Shimadzu).
A unique imaging mass microscope has been developed as a new research tool that offers mass spectrometric analysis capability in a single instrument and resolution enabling the visualization of the sub-cellular distribution of molecules.

The positional information of molecules is lost in traditional mass spectrometric analysis. Shimadzu Corporation (Kyoto, Japan) introduces the “iMScope” imaging mass microscope, a new hybrid type of microscope that combines both an optical microscope and an atmospheric pressure ionization mass spectrometer. The optical microscope allows the observation of high-resolution morphological images, and the hybrid ion trap time of flight mass spectrometer allows both identification and visualization of the distribution of specific molecules in the sectioned sample of interest. In addition, the relative abundance of specific molecules (such as drugs and their metabolites) localized in different tissues can be resolved and compared. The dedicated software for the iMScope, “Imaging MS Solution,” can set all operational parameters for viewing optical microscope images, and many sets of operation parameters are available as default method files; hence, users can perform the imaging mass spectrometry without troublesome additional settings.

Proprietary ultrafocusing laser optics and the highly reproducible, high precision 3D automated sample transfer stage result in a superior spatial mass spectrometry resolution of 5 µm—finest spatial resolution in imaging mass spectrometry, using matrix assisted laser desorption ionization (MALDI-TOF) mass spectrometer, commercially available. The iMScope is capable of analyzing living cells or tissue samples by atmosphere MALDI. By superimposing the two images obtained based on these different principles, the team of scientists from Shimadzu, Hamamatsu University of Medicine, and Keio University have created this powerful new research tool.

The iMScope expands potential research opportunities to a diversity of fields, including direct analyses of biological samples as well as of manufactured devices. Potential biological applications include disease biomarker research and functional biology research, such as for development of early stage cancer indicators with biomarkers in cancer tissue; for analysis of micro tissue (smaller than 10 µm; e.g., pigment layer of the retina); as a new pharmacokinetics tool monitoring drug metabolism; and for advancing agricultural and horticultural products via locating the distribution of key compounds. The iMScope is also well suited for various industrial applications, particularly for defect analysis of electronic components and synthetic polymer materials.

In addition to enabling direct analysis of optical microscope samples, the use of atmosphere MALDI, compared to vacuum MALDI, enables analysis of volatile molecules and biological tissues closer living conditions, as well as shorter instrument start-up time. Additionally, the high speed Nd:YAG laser can ionize molecules at 1 kHz, and original ion optics can acquire the ions (which are ionized by several laser shots) and analyze those at once, as this novel technology provides about 100 times faster high-speed imaging mass spectrometry than conventional mass spectrometers. Hence, the ultra-fast performance of the iMScope also accelerates research progress.

The iMScope will be presented at both KSBMB 2013, Korean Society of Biochemistry and Molecular Biology (May 14-16, 2013) and ASMS 2013, American Society of Mass Spectrometry (June 9-13, 2013, in Minneapolis, MN, USA), in conjunction with the new iMLayer, matrix sample preparation device for tissue imaging.

Related Links:
Shimadzu
iMScope

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more