We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fructose Effects on Brain Influence Overeating

By LabMedica International staff writers
Posted on 14 Jan 2013
Print article
A new study suggests that consuming fructose appears to cause changes in regional cerebral blood flow (CBF) that can lead to overeating.

Researchers at Yale University (New Haven, CT, USA) used arterial spin labeling magnetic resonance imaging (MRI) to quantify regional CBF in 20 healthy normal-weight adult volunteers, both before and after drinking a 75-gram beverage of pure glucose or fructose. The main outcome measures were relative changes in hypothalamic regional CBF after ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion.

The results showed that glucose ingestion increased functional connectivity between the hypothalamus and the thalamus and striatum, while fructose increased connectivity between the hypothalamus and thalamus, but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum--the appetite and reward regions-- was reduced after glucose ingestion; in contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex. Fructose ingestion was also associated with reduced systemic levels of the satiety-signaling hormone insulin. The study was published in the January 2, 2012, issue of the Journal of the American Medical Association (JAMA).

“Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety,” concluded lead author Kathleen Page, MD, and colleagues. “Thus, fructose possibly increases food-seeking behavior and increases food intake.”

Fructose (fruit sugar) is a simple monosaccharide found in many plants and together with glucose forms sucrose, the sugar we eat. It is one of the three dietary monosaccharides, along with glucose and galactose, which are absorbed directly into the bloodstream during digestion. Because fructose is metabolized in the liver to glucose, it has the lowest glycemic index (19) of all the natural sugars. Excess fructose consumption has been hypothesized to be a cause of insulin resistance, obesity, elevated LDL cholesterol, and triglycerides, leading to metabolic syndrome.

Related Links:
Yale University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more