We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Enriched FAK Activity Protects Cardiomyocytes from Heart Attack Damage

By LabMedica International staff writers
Posted on 22 Mar 2012
Print article
Cardiovascular disease researchers have identified a protein in cardiomyocytes that when expressed at high levels protects heart cells from damage caused during myocardial infarction due to the sudden loss of oxygen.

Investigators at the University of North Carolina (Chapel Hill, USA) had shown previously that deletion of the enzyme focal adhesion kinase (FAK) exacerbated myocyte death following heart attack. FAK is a highly conserved, cytosolic, protein-tyrosine kinase involved in cell-cell and cell-matrix interaction and responsible for formation of the focal adhesion complex. It is widely expressed throughout development.

In the current study, the investigators examined the effect of enriched FAK activity on cardiomyocytes during and after heart attack (ischemia/perfusion) in a mouse model. To this end, they created a line of mice genetically engineered to express a highly active form of FAK (SuperFAK) in their cardiomyocytes.

They reported in the March 1, 2012, online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology that FAK activity in unstressed transgenic hearts was modestly elevated, but this had no discernible effect on anabolic heart growth or cardiac function. On the other hand, SuperFAK hearts exhibited a dramatic increase in FAK activity and a reduction in myocyte apoptosis and infarct size 24 to 72 hours following ischemia/perfusion.

Mechanistic studies revealed that elevated FAK activity protected cardiomyocytes from ischemia/perfusion-induced apoptosis by enhancing nuclear factor-kappaB (NF-kappaB)-dependent survival signaling during the early period of reperfusion (30 and 60 minutes). Moreover, adenoviral-mediated expression of SuperFAK in cultured cardiomyocytes attenuated H2O2 or hypoxia/reoxygenation-induced apoptosis. Blockade of the NF-kappaB pathway using a pharmacological inhibitor or small interfering RNAs completely abolished the beneficial effect of SuperFAK.

"This study shows that we can enhance existing cell survival pathways to protect heart cells during a heart attack," said senior author Dr. Joan Taylor, associate professor of pathology and laboratory medicine at the University of North Carolina. "We thought if we could activate FAK to a greater extent, then we could better protect those heart cells."

"I think folks could use this idea to exploit mutations in other molecules - by thinking about how to modify the protein so that it can be under natural controls," said Dr. Taylor. "Negative feedback loops are important because they "reset" the system."

Related Links:

University of North Carolina

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more