We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Newly Characterized Toxin-Antitoxin Module May Lead to Improved Antibiotics

By LabMedica International staff writers
Posted on 13 Dec 2011
Print article
An international team of molecular microbiologists has detailed the molecular pathway responsible for a toxin-antitoxin system in Escherichia coli that becomes activated when the bacteria are put under stress.

A toxin-antitoxin system is a set of two or more closely linked genes that together encode both a protein “poison” and a corresponding “antidote.” When these systems are contained on plasmids, they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell.

MazEF, a toxin-antitoxin locus found in E. coli and other bacteria, induces programmed cell death in response to starvation, specifically a lack of amino acids. This releases the cell's contents for absorption by neighboring cells, potentially preventing the death of close relatives, and thereby increasing the inclusive fitness of the cell that perished. The toxin portion MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA (adenine-cytosine-adenine) sequences.

Investigators at the Hebrew University of Jerusalem (Israel) and the University of Vienna (Austria) reported in the September 30, 2011, issue of the journal Cell that MazF cleaved RNA molecules at ACA sites at or closely upstream of the AUG (adenine-uracil- guanine) start codon of some specific mRNAs and thereby generated leaderless mRNAs. Moreover, MazF also targeted 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3-prime terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro.

The characterization of this particular toxin-antitoxin module may lead to new approaches to the design of improved, novel antibiotics that would effectively utilize the stress-inducing mechanism process in order to destroy more efficiently pathogenic bacteria.

Related Links:

Hebrew University of Jerusalem
University of Vienna


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more