Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
By LabMedica International staff writers Posted on 03 Apr 2025 |

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.7 billion each year. SCI imposes significant emotional and financial strain on both patients and caregivers. Diagnosing SCI and determining the potential for recovery necessitate extensive clinical evaluations and advanced imaging, which is both time-consuming and costly, especially for those with SCI-related complications. Clinicians have long been in search of a rapid, minimally invasive method that can reliably confirm the injury, assess its severity, and predict the potential for recovery. A new blood test, detailed in The Journal of Clinical Investigation, may offer a solution to this pressing need in patient care.
Researchers at Johns Hopkins University School of Medicine (Baltimore, MD, USA) have developed an innovative blood test that could quickly predict the severity of SCI and the likelihood of sensory and motor recovery within six months. This test presents a cost-effective alternative to traditional diagnostic methods. Historically, blood tests have not been seen as reliable for assessing spinal conditions due to the blood-brain barrier—a protective layer that shields the brain from harmful substances, such as viruses and bacteria, found in the blood. However, researchers speculated that SCI could disrupt this barrier, potentially allowing for detectable biomarkers in the bloodstream. Drawing on advancements in cancer biomarker research, particularly the use of liquid biopsies to detect cell-free DNA (cfDNA) and proteins, the team applied similar techniques to SCI, offering a method to guide treatment and monitor recovery progress.
The researchers analyzed blood samples from 50 individuals with acute SCI and 25 without, with 68% of the participants being male and 32% female. They observed that cfDNA levels in the blood corresponded with the American Spinal Injury Association (ASIA) scale, a standard tool for assessing SCI severity based on motor and sensory functions. The study found higher cfDNA concentrations in patients in the ASIA A group, which represents the most severe cases with no sensation or motor function. This was in contrast to less severe injuries in ASIA groups B, C, and D, indicating that greater spinal cord damage leads to more cfDNA being released into the bloodstream. To enhance the accuracy of the blood test, the researchers identified four specific plasma proteins—FABP3, REST, IL-6, and NF-H—that were elevated in patients with SCI. They combined these markers into what they termed the Spinal Cord Injury Index (SCII).
When the SCII was compared with ASIA groups, it accurately reflected the severity of injury and aligned with MRI scans and physical evaluations. Patients were monitored for six months to assess any improvements in their ASIA grade. The SCII successfully predicted with 77% accuracy which patients would experience neurological improvements. This suggests that the new blood test can potentially predict long-term recovery for most patients, addressing a central concern for those with SCI and their caregivers. The researchers believe that using the SCII to track biomarkers over time could help measure treatment effectiveness and facilitate personalized care, similar to the use of liquid biopsies in cancer patients. This multi-analyte blood test represents a promising advancement in SCI diagnostics and personalized treatment for traumatic injuries. However, additional studies are needed, and the research team plans to conduct multi-center clinical trials to further evaluate and refine the performance of this test.
“If you have a spinal cord injury, your main question is simple: Am I going to walk again?” said lead study author and neurosurgery chief resident Tej D. Azad, M.D., M.S. “With the new blood test, we are trying to bring a precision medicine framework to spinal cord injury with something that tells you about injury severity and can hopefully predict neurological recovery.”
Latest Molecular Diagnostics News
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more