AI Tool Combines Data from Medical Images with Text to Predict Cancer Prognoses
|
By LabMedica International staff writers Posted on 10 Jan 2025 |

The integration of visual data (such as microscopic and X-ray images, CT and MRI scans) with textual information (like exam notes and communications between doctors of different specialties) is a crucial aspect of cancer care. While artificial intelligence (AI) tools have been increasingly employed in clinical settings, their primary application has been in diagnostics rather than prognosis. AI aids doctors in reviewing images and detecting disease-related anomalies, such as abnormally shaped cells, but developing computerized models that can combine various types of data has been a challenge. One of the difficulties is the need to train these models with large amounts of labeled and paired data, like a microscope slide showing a cancerous tumor alongside the clinical notes of the patient from whom the tumor was obtained. However, curated and annotated datasets are often scarce. Researchers have now developed an AI model capable of integrating both visual and textual data. After training on 50 million medical images of standard pathology slides and more than 1 billion pathology-related texts, the model surpassed traditional methods in its ability to predict the prognoses of thousands of cancer patients, identify individuals with lung or gastroesophageal cancers likely to benefit from immunotherapy and pinpoint melanoma patients most at risk of experiencing a recurrence.
The model, named MUSK (multimodal transformer with unified mask modeling), was developed by researchers at Stanford Medicine (Stanford, CA, USA). MUSK marks a significant departure from the typical use of AI in clinical settings, and the researchers believe it has the potential to transform how AI can guide patient care. In AI terminology, MUSK is considered a foundation model. Foundation models, which are pretrained on large datasets, can be further fine-tuned with additional training to handle specific tasks. Since MUSK was designed to utilize unpaired multimodal data that does not meet the traditional requirements for training AI, it can leverage a much larger pool of data for its initial learning phase. As a result, subsequent training only requires smaller, more specialized datasets. Essentially, MUSK is a ready-to-use tool that doctors can customize to answer specific clinical questions.
To develop MUSK, the researchers gathered microscopic tissue slides, pathology reports, and follow-up data (including patient outcomes) from The Cancer Genome Atlas, a national database, for individuals with 16 major cancer types, such as breast, lung, colorectal, pancreatic, kidney, bladder, and head and neck cancers. This data was used to train MUSK to predict disease-specific survival or the percentage of patients who have not died from a specific disease within a given time frame. According to the study, published in Nature, MUSK accurately predicted disease-specific survival for all cancer types 75% of the time. In comparison, traditional predictions based on a person’s cancer stage and other clinical risk factors were correct 64% of the time. In another example, MUSK was trained to analyze extensive data to predict which patients with lung cancer or cancers of the gastric and esophageal tracts are most likely to benefit from immunotherapy.
For non-small cell lung cancer, MUSK identified patients who responded well to immunotherapy approximately 77% of the time. In contrast, the conventional method of predicting immunotherapy response based on PD-L1 expression was correct only 61% of the time. Similarly, when the researchers trained MUSK to identify melanoma patients at high risk of relapse within five years after initial treatment, the model was accurate about 83% of the time, which is roughly 12% more accurate than other foundation models.
“MUSK can accurately predict the prognoses of people with many different kinds and stages of cancer,” said Ruijiang Li, MD, an associate professor of radiation oncology. “We designed MUSK because, in clinical practice, physicians never rely on just one type of data to make clinical decisions. We wanted to leverage multiple types of data to gain more insight and get more precise predictions about patient outcomes.”
“What’s unique about MUSK is the ability to incorporate unpaired multimodal data into pretraining, which substantially increases the scale of data compared with paired data required by other models,” added Li.
Latest Pathology News
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








