LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Method Measures Cancer Severity Using Pathology Reports

By LabMedica International staff writers
Posted on 27 Nov 2024
Image: Researchers have used an AI model to automate cancer pathology reports (Photo courtesy of Shutterstock)
Image: Researchers have used an AI model to automate cancer pathology reports (Photo courtesy of Shutterstock)

Researchers often rely on tumor registries, which are databases managed by hospitals and government agencies, to screen cancer patients for clinical trials. These registries require specialized staff to manually assess a patient’s cancer stage by reviewing various documents, including laboratory reports and clinicians’ notes. This process can be time-consuming, and by the time the patient’s information is added to the registry, months may have passed, potentially missing the opportunity for the patient to participate in clinical trials or receive other treatments. Now, researchers have developed and successfully tested an artificial intelligence (AI) method that can significantly reduce this delay, enhancing the pace of research and broadening patient access to clinical trials.

The AI method, developed by a group of investigators led by Cedars-Sinai (Los Angeles, CA, USA), uses pathology reports to automatically classify patients by the severity of their cancers, potentially speeding up the clinical trial selection process. This breakthrough, outlined in the peer-reviewed journal Nature Communications, not only has the potential to streamline the launch of cancer clinical trials but also represents a significant expansion of AI’s role in healthcare. The development of this AI model was made possible by previous research that overcame technical challenges in extracting and analyzing pathologists’ notes from electronic health records. The AI model can quickly determine the cancer stage by interpreting a specific component of the patient's electronic health record: the pathology report, which details the findings from pathologists’ examination of tissue samples. In tests with thousands of patient records, the researchers confirmed that their AI model effectively staged patients’ cancers.

The method is based on a transformer AI model, which mimics the complex decision-making abilities of the human brain. To develop the model, the researchers first trained it using publicly available pathology reports from The Cancer Genome Atlas, a government database containing data from nearly 7,000 patients across 23 types of cancers. To test its versatility, the model was then applied to nearly 8,000 pathology reports from a single medical center. The results, measured using a standard AI evaluation statistic, showed that the model performed with high accuracy. In addition to screening patients for clinical trials based on their cancer stages, the AI model can also automate the classification of patients for observational studies, retrospective data analysis, and treatment planning. The researchers have made their AI model, named BB-TEN (Big Bird – TNM staging Extracted from Notes), available to other institutions for academic and certain other uses.

“By speeding up the selection of candidates for cancer clinical trials, this innovative AI model shows promise for accelerating the development of relevant treatments and making them available to more patients,” said Jason Moore, PhD, chair of the Department of Computational Biomedicine at Cedars-Sinai.

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more