LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI-Powered Whole-Slide Image Analyzer Predicts Immunotherapy Response for Rare Cancer Patients

By LabMedica International staff writers
Posted on 13 Nov 2024
Print article
Image: SCOPE IO has shown promise in predicting immunotherapy response in rare cancer patients (Photo courtesy of Lunit)
Image: SCOPE IO has shown promise in predicting immunotherapy response in rare cancer patients (Photo courtesy of Lunit)

Immunotherapy, especially immune checkpoint inhibitors like pembrolizumab, has become a groundbreaking treatment for cancer patients. However, not all patients respond the same way to this therapy, and identifying who will benefit the most remains a challenge, particularly in the case of rare tumor types where treatment options and research data are sparse. Now, a new study has highlighted the potential of using artificial intelligence (AI) to assess the tumor microenvironment to predict treatment responses in patients with rare cancers receiving pembrolizumab.

In the study, researchers at The University of Texas MD Anderson Cancer Center (Houston, TX, USA) utilized Lunit’s (Seoul, South Korea) AI-powered whole-slide image analyzer, Lunit SCOPE IO, to examine tumor microenvironment characteristics in biopsies taken both before and during treatment from patients with rare tumors undergoing pembrolizumab therapy. The study involved the analysis of over 500 slides from more than 10 different rare tumor types. The results suggest that Lunit SCOPE IO can effectively detect specific patterns in tumor samples that are linked to more favorable treatment outcomes. Patients whose tumors exhibited AI-detected changes in intratumoral immune cells (tumor-infiltrating lymphocytes; iTIL) and tumor content were significantly more likely to show positive responses to immunotherapy. These groundbreaking research findings reveal the potential of AI to predict how well patients with rare cancers will respond to immunotherapy treatments.

"These findings highlight how our AI technology can provide deep insights into the unique and challenging tumor microenvironment seen in rare cancers, and represent a critical advancement in our understanding of rare tumor biology," said Brandon Suh, CEO of Lunit. "This study has demonstrated the value of Lunit SCOPE IO in an important clinical setting, showcasing its potential to personalize treatment for patients who have limited therapeutic options. We believe these advancements are a testament to the transformative impact AI can have on oncology and patient outcomes."

Related Links:
Lunit
The University of Texas MD Anderson Cancer Center

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.