Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival
By LabMedica International staff writers Posted on 06 Nov 2024 |
.jpg)
A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their surfaces, creating physical 'synapses' between cells. This movement of resources from within the cell to its surface is essential for coordinating immune responses against pathogens and cancers. To explore the interactions of immune cells within the tumor microenvironment—the area surrounding a tumor—researchers typically isolate these immune cells to analyze the genes active in each cell type. Alternatively, they may apply fluorescent tags to specific proteins and use microscopy to visualize the abundance of those proteins based on fluorescence intensity. However, neither method reveals whether the proteins are located on the cell surface at a synapse, contributing to cell-to-cell interactions. A new combination of imaging and computational techniques has now been developed to study the connections between immune cells in breast cancer and melanoma.
Researchers at The Jackson Laboratory (JAX, Bar Harbor, ME, USA) began by utilizing existing microscopy data to examine how signaling molecules cluster at immune synapses, providing a more comprehensive understanding of immune cell interactions. They went on to integrate advanced imaging methods with a novel computational technique to investigate immune cell interactions in unprecedented detail, discovering that these interactions in the context of breast cancer or melanoma can help predict immune responses and patient outcomes. Notably, the research indicated that increased interactions between two specific types of immune cells correlated with longer survival in breast cancer patients.
The technique, known as Computational Immune Synapse Analysis (CISA), allows the research team to detect not only which cells within a tissue contact each other physically but also whether key molecules are concentrated at those contact points. The method analyzes immune cell images, emphasizing cell edges and potential immune synapses, and compares these to the localization of tagged molecules. By focusing on T cells, the researchers demonstrated that CISA could identify interactions between T cells and other immune cells within tumor microenvironments in human melanoma samples. Additional experiments indicated that synapses formed between T cells and macrophages—cells that engulf pathogens and tumor cells—were associated with increased T cell proliferation.
The researchers then assessed whether immune cell interactions in breast cancer samples influenced the progression of the cancer. Their findings, published in the advanced online issue of Communications Biology, revealed that stronger connections between T cells and B cells—another immune cell type—were linked to improved survival rates for patients. This insight could eventually facilitate new methods for predicting patient outcomes, selecting candidates for immune therapies, or even developing novel immunotherapies. Identifying significant patterns in cell interactions is the ultimate aim of CISA. The researchers have made this image analysis platform accessible online for other scientists and believe it could be utilized to analyze interactions between various cell types. Additionally, it is capable of processing different types of images; melanoma samples were examined using histocytometry, while breast cancer samples were analyzed using imaging mass cytometry (IMC). The team plans to extend their method to other tumor types and immune cell types to deepen their understanding of the tumor microenvironment and its effects on cancer.
“Researchers have long suspected that better characterizing this complex community, which includes immune cells, blood vessels, and signaling molecules, could shed light on how cancers grow, spread, and respond to treatment,” said Jeffrey Chuang, a professor at JAX and senior author of the new study. “This new analysis lets us quantify the locations and interactions of cells and molecules in a way that has never before been possible using imaging.”
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more
Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more
Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Approximately one in three women aged 14-49 in the United States will experience bacterial vaginosis (BV), a vaginal bacterial imbalance, at some point in their lives. Around 50% of BV cases do not present... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more