Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study
By LabMedica International staff writers Posted on 05 Nov 2024 |

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in blood that are associated with various conditions. However, many diseases still lack identifiable blood biomarkers, which limits the effectiveness of current screening methods. In contrast, genome sequencing, which was once rare and prohibitively expensive, has become increasingly accessible and affordable for clinical use, making it a potentially superior option for newborn screening. This technique analyzes a newborn’s DNA to identify hundreds of specific gene variants known to cause diseases, with the capability to detect thousands of genetic disorders—far exceeding the approximately 60 conditions currently identified through standard newborn screening. The genes included in newborn screening can lead to diseases that, if diagnosed early in infancy, could be prevented or treated. Now, early results from a study on newborn screening methods indicate that DNA analysis identifies significantly more preventable or treatable serious health conditions compared to standard newborn screening and is preferred by most parents offered this option.
The GUARDIAN study, conducted by researchers at Columbia University Irving Medical Center (New York, NY, USA), is one of the first large-scale studies globally to utilize genome sequencing for newborn screening and is the first to publish preliminary findings. Launched in September 2022, the GUARDIAN study provided genome sequencing to every newborn at NewYork-Presbyterian hospitals in New York City. In its inaugural year, GUARDIAN assessed genes associated with 156 rare but treatable conditions. Parents had the option to include an additional panel of 99 conditions that currently lack treatments but may benefit from early intervention. The study utilized DNA from the same dried blood spots collected at birth for traditional newborn screening, which is processed for each participant by the New York State Department of Health’s Newborn Screening Program.
Out of 147 children who screened positive using genome sequencing, 120 were confirmed true positives and diagnosed with a rare condition, with only 10 identified through standard screening methods. Most of the children diagnosed with a genetic condition (92 out of 120) had glucose-6-phosphate dehydrogenase deficiency (G6PD), an enzyme deficiency not included in traditional screening. Individuals with G6PD deficiency can experience moderate to life-threatening reactions to specific foods and medications, which can be easily prevented by avoiding those triggers. In one instance, genome sequencing identified a critical condition—severe combined immunodeficiency disorder (SCID), often referred to as “bubble boy syndrome”—that was missed by standard screening. The presence of a rare genetic variant causing SCID was detected, allowing doctors to protect the infant from life-threatening infections before they could occur.
Overall, 3.7% of children in the study tested positive for a genetic condition. Excluding G6PD cases, the positive screening rate was 0.6%, which is double the 0.3% rate achieved through standard screening in New York state. Parental acceptance of genome sequencing for newborn screening was notably high, with 72% of families approached agreeing to participate, and 90% of participants opting for the additional screening for untreatable conditions. The GUARDIAN study is now investigating gene variants linked to more than 450 conditions, with dozens of new conditions being identified each year. The ongoing study aims to enroll 100,000 infants in the coming years to gain insights into parental perceptions regarding genome sequencing, the associated costs, privacy concerns, and challenges in interpreting results across diverse ancestral backgrounds.
“The results show us that genome sequencing can radically improve children’s medical care,” said Joshua Milner, professor of Pediatrics, director of Allergy/Immunology and Rheumatology at Columbia University Vagelos College of Physicians and Surgeons, and one of the study’s co-authors. “Genome sequencing allows us to detect things that cause serious illness and take action to prevent those illnesses in a significant number of children, not just a few rare cases. It should be instituted as the next standard for newborn screening because it can detect so much more than current methods.”
Related Links:
Columbia University Irving Medical Center
Latest Molecular Diagnostics News
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more