LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma

By LabMedica International staff writers
Posted on 11 Oct 2024
Image: Bone marrow affected by multiple myeloma, a disease against which PVR inhibition can increase the efficacy of immunotherapy (Photo courtesy of Cancer Epigenetics Group, IJC)
Image: Bone marrow affected by multiple myeloma, a disease against which PVR inhibition can increase the efficacy of immunotherapy (Photo courtesy of Cancer Epigenetics Group, IJC)

Multiple myeloma is a blood cancer that primarily affects individuals over the age of sixty, and its occurrence rises as the population ages. In this disease, the bone marrow—the spongy tissue inside bones that produces normal blood cells—becomes overrun by abnormal plasma cells. Under normal conditions, plasma cells are part of the immune system, helping to fight infections, but in multiple myeloma, they become malignant, damaging the bone marrow and spreading to other areas such as the spine, skull, pelvis, and ribs. While current treatments can manage the disease for extended periods, a definitive cure remains elusive. However, advancements in immunotherapy, including the use of antibodies and engineered immune cells, have opened new possibilities for treating patients who relapse or are resistant to standard therapies.

Now, researchers at Josep Carreras Leukemia Research Institute (IJC, Barcelona, Spain) have demonstrated an epigenetic test that predicts the effectiveness of new immunotherapy treatments for multiple myeloma. In a study published in Leukemia, a journal from the Nature group, the team focused on identifying genes altered in cancer that are involved in immune system function and antigen recognition. This led them to discover a subgroup of multiple myeloma patients with an epigenetic modification in the PVR gene, a key immune system regulator, which resulted in the gene losing its activity.

The researchers observed that patients with this PVR gene defect experienced a better disease progression, leading them to hypothesize that cancer cells in these individuals might be more susceptible to immune system attacks. To test this idea, they used a cellular model of multiple myeloma, eliminating the PVR gene to observe how the cells responded to various immunotherapy approaches, including antibodies, T-lymphocytes, and genetically engineered natural killer cells (CAR-T cells). In all instances, the immune response effectively targeted and attacked the tumor cells in vitro. This discovery could help clinicians identify which patients are likely to benefit most from immunotherapy, improving personalized treatment strategies and clinical management.

“Our results demonstrate that in this malignant blood disease, inhibiting the PVR gene decisively increases the probability of success of immunotherapy,” said Dr. Manel Esteller, ICREA Research Professor at IJC, who directed the research “Now, then, it would be the turn of the pharmaceutical industry and clinical research to bring these results to the bedside of the patient."

Related Links:
IJC

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more