We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo ADLM 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Identification Method for Cancerous DNA to Reduce Need for Painful Biopsy Surgery

By LabMedica International staff writers
Posted on 09 Sep 2024
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)

Currently, most cancer patients must undergo an invasive and expensive surgical biopsy to remove a tissue sample from their tumor to determine the best treatment options. However, all individuals have small amounts of DNA that circulate freely in their blood, which is not confined within blood cells. In cancer patients, some of this circulating free DNA (ctDNA) originates from their tumors. This ctDNA differs from their normal circulating DNA as it carries mutations that have turned these cells from healthy to cancerous. Thus, ctDNA can provide insights into the cancer's characteristics and indicate which treatments might be most effective. Existing methods to analyze ctDNA are hampered by its low abundance and the presence of a larger quantity of non-cancerous DNA in the blood samples.

Researchers at Heriot-Watt University (Edinburgh, UK) are now developing a novel method to identify cancerous DNA that could reduce the need for painful biopsies. This new technique, known as SNARE, aims to simplify the processing of blood samples to enhance the detection and characterization of cancerous DNA. The team is working on creating both robotic benchtop systems and microfluidic platforms (similar to certain types of lateral flow tests) and will evaluate these methods using blood samples from breast cancer patients to achieve more sensitive ctDNA detection and reduce the need for expensive DNA sequencing.

In patients with advanced-stage cancer, significant amounts of DNA in the bloodstream can often be detected, but by this stage, it is frequently too late for a cure. On the other hand, in early-stage cancer patients, where treatment success rates are higher, over 99% of the circulating free DNA typically originates from healthy cells, complicating the identification of cancerous mutations. The Heriot-Watt research team plans to further develop MicroSNARE, which they have already tested in the lab, with the aim of diagnosing, analyzing, and characterizing tumors at an earlier stage. They also aim to detect cancer recurrence before it can progress and spread. MicroSNARE promises a groundbreaking, less invasive approach to cancer detection, potentially enabling earlier diagnosis and intervention.

Related Links:
Heriot-Watt University

New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
New
Automated Biochemical Analyzer
iBC 900

DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
PURITAN MEDICAL