We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Identification Method for Cancerous DNA to Reduce Need for Painful Biopsy Surgery

By LabMedica International staff writers
Posted on 09 Sep 2024
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)

Currently, most cancer patients must undergo an invasive and expensive surgical biopsy to remove a tissue sample from their tumor to determine the best treatment options. However, all individuals have small amounts of DNA that circulate freely in their blood, which is not confined within blood cells. In cancer patients, some of this circulating free DNA (ctDNA) originates from their tumors. This ctDNA differs from their normal circulating DNA as it carries mutations that have turned these cells from healthy to cancerous. Thus, ctDNA can provide insights into the cancer's characteristics and indicate which treatments might be most effective. Existing methods to analyze ctDNA are hampered by its low abundance and the presence of a larger quantity of non-cancerous DNA in the blood samples.

Researchers at Heriot-Watt University (Edinburgh, UK) are now developing a novel method to identify cancerous DNA that could reduce the need for painful biopsies. This new technique, known as SNARE, aims to simplify the processing of blood samples to enhance the detection and characterization of cancerous DNA. The team is working on creating both robotic benchtop systems and microfluidic platforms (similar to certain types of lateral flow tests) and will evaluate these methods using blood samples from breast cancer patients to achieve more sensitive ctDNA detection and reduce the need for expensive DNA sequencing.

In patients with advanced-stage cancer, significant amounts of DNA in the bloodstream can often be detected, but by this stage, it is frequently too late for a cure. On the other hand, in early-stage cancer patients, where treatment success rates are higher, over 99% of the circulating free DNA typically originates from healthy cells, complicating the identification of cancerous mutations. The Heriot-Watt research team plans to further develop MicroSNARE, which they have already tested in the lab, with the aim of diagnosing, analyzing, and characterizing tumors at an earlier stage. They also aim to detect cancer recurrence before it can progress and spread. MicroSNARE promises a groundbreaking, less invasive approach to cancer detection, potentially enabling earlier diagnosis and intervention.

Related Links:
Heriot-Watt University

New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
ESR Analyzer
TEST1 2.0
New
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more