LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

18-Gene Urine Test for Prostate Cancer to Help Avoid Unnecessary Biopsies

By LabMedica International staff writers
Posted on 19 Apr 2024
Print article
Image: The new urine-based test detects high-grade prostate cancer (Photo courtesy of U-M Rogel Cancer Center)
Image: The new urine-based test detects high-grade prostate cancer (Photo courtesy of U-M Rogel Cancer Center)

One of the major challenges in prostate cancer management is distinguishing between slow-growing tumors, which are less likely to cause harm, and aggressive cancers that require immediate treatment. Both the Gleason score and Grade Group (GG) system are instrumental in classifying the aggressiveness of prostate cancer. Specifically, cancers rated as Gleason 3+4=7 or Grade Group 2 (GG2) or higher are considered more likely to spread compared to Gleason 6 or Grade Group 1 prostate cancers, which are generally non-proliferative. Despite prostate-specific antigen (PSA) being a cornerstone of prostate cancer screening, standard tests frequently struggle to definitively identify cases requiring urgent treatment. Now, a new urine-based test looks at 18 genes to identify prostate cancer that requires immediate treatment over the slow-growing type.

The test, called MyProstateScore2.0, or MPS2, has been developed by researchers at the University of Michigan (Ann Arbor, MI, USA) and builds on their urine-based test developed almost a decade ago when the same team had discovered two genes that fuse to cause prostate cancer. While the original MPS test currently used evaluated PSA, the gene fusion TMPRSS2::ERG, and PCA3, the new MPS2 test now examines 18 genes associated with high-grade prostate cancer. The expansion came after the team conducted RNA sequencing of over 58,000 genes to select 54 candidates highly indicative of more severe cancers. They validated these markers against urine samples collected through another major U-M study from 2008 to 2020, involving around 700 patients who underwent prostate biopsies due to elevated PSA levels. This evaluation helped narrow the selection to 18 markers that consistently correlated with higher-grade cancers. The test still includes the original MPS markers, along with 16 additional biomarkers to complement them.

The team then went on to extend their analysis by collaborating with the Early Detection Research Network (EDRN), a consortium of over 30 laboratories across the U.S., which provided a broad, nationally representative sample base. The U-M team performed blind testing of over 800 urine samples, with results compared against patient records by the NCI-EDRN collaborators. The findings highlighted MPS2's superior ability to identify GG2 or higher cancers and its near-perfect accuracy in ruling out GG1 cancers. More importantly, MPS2 proved significantly more effective than PSA alone in reducing unnecessary biopsies. While PSA tests reduced unnecessary biopsies by 11%, MPS2 could prevent up to 41% of these procedures, demonstrating its value in improving prostate cancer diagnosis and management.

“There was still an unmet need with the MyProstateScore test and other commercial tests currently available. They were detecting prostate cancer, but in general they were not doing as good a job in detecting high-grade or clinically significant prostate cancer. The impetus for this new test is to address this unmet need,” said Arul M. Chinnaiyan, M.D., Ph.D., whose lab discovered the T2::ERG gene fusion and developed the initial MPS test. “If you’re negative on this test, it’s almost certain that you don’t have aggressive prostate cancer.”

Related Links:
University of Michigan

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.