We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA Biosensor Enables Early Diagnosis of Cervical Cancer

By LabMedica International staff writers
Posted on 21 Dec 2023
Print article
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)

Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community. These nanosheets are formed through the stacking of S–Mo–S layers that are held together by Van der Waals forces. MoS2's distinctive structural, optical, thermal, and electrochemical attributes have paved the way for research in diverse domains, including biomolecule sensing, optoelectronics, energy storage, and more. Historically, carbon nanostructures have been used as an immobilization platform for DNA. To replace carbon with MoS2 as an effective electrochemical DNA sensor, the electrical conductivity of MoS2 must be improved significantly.

To tackle this challenge, researchers at Chung-Ang University (Seoul, South Korea) have devised an electrochemical DNA biosensor using a composite of graphitic nano-onions and MoS2 nanosheets. This biosensor shows promise in detecting human papillomavirus (HPV) types 16 and 18, offering the potential for early cervical cancer diagnosis. The team measured the biosensor's sensitivity to these HPV types using the differential pulse voltammetry (DPV) technique in conjunction with methylene blue (MB) as a redox indicator. They observed that the nano-onion/MoS2 nanosheet composite electrode demonstrated higher current peaks than its MoS2-only counterpart, suggesting enhanced conductive electron transfer facilitated by the nano-onions.

This enhancement led to the effective and specific detection of target DNAs from HPV-16 and HPV-18 Siha and Hela cancer cell lines. As a result, MoS2 nanosheets with improved electrical conductivity, when combined with nano-onions, have shown potential as a robust platform for creating electrochemical biosensors that can efficiently diagnose various health conditions, including cervical cancer. Moreover, the integration of nano-onions or nanodiamonds with various organic biomaterials could lead to advancements in chemical functionality, electron transfer conductivity, light absorption, and more. These developments hold promise for groundbreaking applications in disease sensing, targeted drug delivery, and biomedical imaging and diagnostics.

Related Links:
Chung-Ang University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more