We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fluorescent Carbon Nanotubes Accurately Detect Bacteria and Viruses

By LabMedica International staff writers
Posted on 31 Jul 2023
Print article
Image: 3D printed model of a carbon nanotube (Photo courtesy of RUB)
Image: 3D printed model of a carbon nanotube (Photo courtesy of RUB)

An interdisciplinary research team that comprised scientists from Ruhr University Bochum (RUB, Bochum, Germany) has developed an innovative method to construct modular optical sensors capable of identifying viruses and bacteria. The team utilized fluorescent carbon nanotubes attached to a novel type of DNA anchors which serve as molecular handles. These anchor structures can be utilized to conjugate biological recognition units such as antibodies aptamers to the nanotubes, enabling interaction with bacterial or viral molecules. This interaction impacts the fluorescence of the nanotubes, causing their brightness levels to increase or decrease.

The research team utilized tubular nanosensors composed of carbon, each with a diameter of less than one nanometer. When irradiated with visible light, these nanotubes emit near-infrared light, a spectrum invisible to the human eye but ideal for optical applications due to the significant reduction of other signals within this range. Previously, the team had successfully manipulated the nanotubes' fluorescence to detect vital biomolecules. Their latest effort involved customizing carbon sensors for easy detection of various target molecules.

This breakthrough was achieved with the help of DNA structures with guanine quantum defects. This process involved linking DNA bases to the nanotube in order to introduce a defect into the nanotube's crystal structure. Consequently, the nanotubes' fluorescence underwent a quantum-level change. In addition, the defect functioned as a molecular handle, enabling the addition of a detection unit that could be adjusted to the respective target molecule to identify a specific viral or bacterial protein.

The team demonstrated the new sensor concept by targeting the SARS-CoV-2 spike protein. Researchers used aptamers that bind to the SARS-CoV-2 spike protein, following which the fluorescent sensors reliably indicated the protein's presence. Notably, the selectivity and stability of sensors featuring guanine quantum defects surpassed those of sensors without such defects, especially when in solution.

Related Links:
Ruhr University Bochum

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more