We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarkers Predict Lyme Disease Post-Treatment Prognosis

By LabMedica International staff writers
Posted on 06 Dec 2022
Print article
Image: The NEBNext Ultra II Directional RNA Library Prep Kit (Photo courtesy of New England Biolabs)
Image: The NEBNext Ultra II Directional RNA Library Prep Kit (Photo courtesy of New England Biolabs)

Testing and diagnosis of the earliest stages of Lyme Disease (LD) have proven to be difficult or unreliable. The universally accepted diagnostic test for LD is a positive enzyme-linked immunosorbent assay (ELISA) followed by a positive western blot for immunoglobulin M (IgM) and IgG.

Antibiotic treatment includes a dosing regimen of doxycycline, amoxicillin, ceftriaxone, or cefotaxime, dependent on patient age and displayed symptoms. Even when the disease is clearly diagnosed and properly treated, about 10%–20% of affected individuals do not respond completely and develop prolonged symptoms, a condition termed post-treatment LD (PTLD).

A team of medical scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their colleagues enrolled 152 individuals (66 females and 86 males) with symptoms of post-treatment LD (PTLD) to profile their peripheral blood mononuclear cells (PBMCs) with RNA sequencing (RNA-seq). Their average age was 47.27 ±15.85. The acute LD cohort consisted of 72 patients made of 31 females and 41 males and their average age was 47.19 ±15.68.

PBMCs were isolated from fresh whole blood using Ficoll. RNA was extracted from 107 PBMCs using RLT Lysis Buffer (Qiagen, Germantown, MD, USA). The NEBNext Ultra II Directional RNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA) was used to generate RNA-seq libraries. Poly A RNAs were isolated from total RNAs using NEBNext Poly(A) Magnetic Isolation Module and then fragmented for cDNA synthesis. The prepared samples were processed by an Illumina HiSeq2500 (Illumina, San Diego, CA, USA).

The investigators observe that most individuals with PTLD have an inflammatory signature that is distinguished from the acute LD group. By distilling gene sets from this study with gene sets from other sources, they identified a subset of genes that are highly expressed in the cohorts, but are not already established as biomarkers for inflammatory response or other viral or bacterial infections. They further reduce this gene set by feature importance to establish an mRNA biomarker set capable of distinguishing healthy individuals from those with acute LD or PTLD as a candidate for translation into an LD diagnostic. The 35 gene profile included TTC26, TTC23, IFT 74, IFT81, IFT85, ARL13B, CEP83, CEP162, CEP76, and CEP44. CEP83 encodes a protein involved in centrosome docking on the plasma membrane and is critical for primary cilia and immune synapse formation.

The authors concluded that their study produced a gene-expression profile for PTLD. This is just a first step that requires confirmation for diagnosis of PTLD. Gene expression can support the diagnosis of PTLD in individuals with a history of prior diagnosed and treated LD and persistent post-treatment symptoms. The study was published on November 15, 2022 in the journal Cell Reports Medicine.

Related Links:
Icahn School of Medicine at Mount Sinai
Qiagen
New England Biolabs
Illumina

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.