We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Different Kits and PCR Methods Evaluated for Malaria Diagnosis

By LabMedica International staff writers
Posted on 13 Jul 2022
Print article
Image: The BIOSYNEX AMPLIQUICK Malaria is an in vitro molecular diagnostic test for the detection of the five species of Plasmodium (Photo courtesy of Biosynex)
Image: The BIOSYNEX AMPLIQUICK Malaria is an in vitro molecular diagnostic test for the detection of the five species of Plasmodium (Photo courtesy of Biosynex)

Malaria is an infectious disease considered as one of the biggest causes of mortality in endemic areas. This life-threatening disease needs to be quickly diagnosed and treated. The standard diagnostic tools are thick blood smears microscopy and immuno-chromatographic rapid diagnostic tests.

However, these methods lack sensitivity especially in cases of low parasitaemia and non-falciparum infections. Therefore, the need for more accurate and reliable diagnostic tools, such as real-time polymerase chain reaction based methods which have proven greater sensitivity particularly in the screening of malaria, is pronounced.

Scientists at the Hôpital Bichat - Claude Bernard (Paris, France) conducted a study on 183 blood samples received for expert diagnosis at the French National Malaria Reference Centre (FNMRC). The team assessed sensitivity and specificity of two commercial malaria qPCR kits and two in-house developed qPCRs compared to LAMP.

The samples were tested by four different qPCR methods: the Ampliquick Malaria test (Biosynex SA, Illkirch-Graffenstaden France), the BioEvolution Plasmodium Typage test (Bio-Evolution, Île-de-France, France), the in-house HRM and the in-house TaqMan qPCRs. The specificity and sensitivity of each method and their confidence intervals were determined with the LAMP-based assay Alethia Malaria (Meridian Bioscience, Cincinnati, OH, USA) used as the reference for malaria diagnosis. The accuracy of species diagnosis of the Ampliquick Malaria test and the two in-house qPCRs was also evaluated using the BioEvolution Plasmodium Typage test as the reference method for species identification.

The investigators reported that that when compared to LAMP, a test with excellent diagnostic performances, the two in-house developed qPCRs were the most sensitive (sensitivity at 100% for the in-house TaqMan qPCR and 98.1% for the in-house high resolution melting (HRM) curve analysis qPCR, followed by the two commercial kits: the Biosynex Ampliquick Malaria test (sensitivity at 97.2%) and the BioEvolution Plasmodium Typage (sensitivity at 95.4%). Additionally, with the in-house qPCRs they were able to confirm a Plasmodium falciparum infection in microscopically negative samples that were not detected by commercial qPCR kits. This demonstrated that the var genes of P. falciparum used in these in-house qPCRs are more reliable targets than the 18S sRNA commonly used in most of the developed qPCR methods for malaria diagnosis.

Analysis with the Bio-Evolution kit showed 135 positive and 48 negative samples. Of the 135 positive samples: 73 were identified as P. falciparum, 36 were identified as P. ovale spp, eight were identified as P. vivax, 15 were identified as P. malariae, two mixed infections by P. falciparum and P. malariae and one mixed infection P. falciparum, P. malariae and P. ovale. The 147 isolates tested with LAMP were assessed with the four different qPCR methods. The 43 LAMP negative samples were also negative by all four methods, which afford them all 100% specificity. Of the 104 positive samples, five were not detected by Plasmodium Typage (Bio-Evolution), three by Ampliquick Malaria and two by the HRM-qPCR, but all with the in-house TaqMan-qPCR.

The authors concluded that overall, their results accentuate the role molecular methods could play in the screening of malaria. This may represent a helpful tool for other laboratories looking to implement molecular diagnosis methods in their routine analysis, which could be essential for the detection and treatment of malaria carriers and even for the eradication of this disease. The study was published on June 27, 2022 in the Malaria Journal.

Related Links:
Hôpital Bichat - Claude Bernard 
Biosynex SA 
Bio-Evolution 
Meridian Bioscience 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.