We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method Detects Different Types of Dangerous Viruses or Disease Markers from Single Measurement

By LabMedica International staff writers
Posted on 23 May 2022
Image: Graphene device chip attached to an electrical connector with two 5 μL HCVcAg samples (Photo courtesy of Swansea University)
Image: Graphene device chip attached to an electrical connector with two 5 μL HCVcAg samples (Photo courtesy of Swansea University)

For many parts of the world that do not have access to high-tech labs found in hospitals, detecting viruses such as hepatitis C (HCV) – could save millions of preventable deaths worldwide. Now, scientists have developed a method to detect viruses in very small volumes. The work follows a successful Innovate UK project developing graphene for use in biosensors – devices that can detect tiny levels of disease markers. Biosensors such as this could be used at the point-of-care - opening effective healthcare in difficult-to-reach settings.

What makes the detection of viruses in such small volumes possible is the use of a material called graphene. Graphene is extremely thin - only one atom thick - making it very sensitive to anything that attaches to it. By carefully controlling its surface, scientists at Swansea University (Swansea, UK) were able to make the surface of graphene sensitive to the HCV virus. In the future, it is hoped that multiple biosensors can be developed onto a single chip – this could be used to detect different types of dangerous viruses or disease markers from a single measurement.

“Highly sensitive and simplistic sensors have never been more in demand with regards point-of-care applications,” said Ffion Walters, Innovation Technologist at Swansea University’s Healthcare Technology Centre. “This collaborative project has allowed us to realise proof-of-concept real-time sensors for HCV, which could be especially beneficial in resource-limited settings or for difficult-to-reach populations.”

“At Swansea University, we have now developed graphene-based biosensors for both Hepatitis B and C. This is a major step forward to a future single point of care test,” added Professor Owen Guy, Head of Chemistry at Swansea University.

Related Links:
Swansea University 

Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Modular Hemostasis Automation Solution
CN Track
New
Automated PCR Setup
ESTREAM

DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
PURITAN MEDICAL