LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electronic Nose Technology May Facilitate Accurate Diagnosis of Sarcoidosis

By LabMedica International staff writers
Posted on 12 Apr 2022
Print article
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)

Sarcoidosis is a granulomatous inflammatory disease without a known cause that can affect roughly any organ. The lungs are involved in the vast majority of patients (89% to 99%). Diagnosis can be challenging because no standardized diagnostic procedure exists. The three major criteria for diagnosis are compatible clinical features, pathology tissue assessment, and exclusion of other granulomatous diagnoses.

Breath biomarkers are increasingly studied in respiratory diseases, as exhaled volatile organic compounds (VOCs) reflect pathophysiological processes in the human body. Techniques such as gas chromatography and mass spectrometry can be used to identify individual VOCs, but are time-consuming and complex. Analysis of a profile of VOCs (a “breathprint”) using electronic nose (eNose) technology will be of added value in clinical practice.

Respiratory Medicine Specialists at the Erasmus Medical Center (Rotterdam, The Netherlands) included in cross-sectional study 252 patients with sarcoidosis (mean age, 53.1 years; 53.2% men), 317 with interstitial lung disease (ILD, mean age, 70 years; 61.5% men), and 48 healthy control subjects (mean age, 36.5 years; 31.3% men). The SpiroNose (Breathomix, Leiden, The Netherlands) was used for exhaled breath analysis. Participants were instructed to perform five tidal breaths, followed by an inhalation to total lung capacity, a 5 second breath hold, and a slow expiration. To explore if breathprints correlate with disease activity, the soluble interleukin-2 receptor (sIL-2R) level was used as a marker for activity. In the laboratory, an sIL-2R value ≤ 550 U/mL was considered normal.

The team reported that eNose distinguished sarcoidosis from control subjects with an area under the curve (AUC) of 1.00 and pulmonary sarcoidosis from other ILD (AUC, 0.87) and hypersensitivity pneumonitis (AUC, 0.88). Exhaled breath of sarcoidosis patients with and without pulmonary involvement, pulmonary fibrosis, multiple organ involvement, pathology-supported diagnosis, and immunosuppressive treatment revealed no distinctive differences. Breath profiles differed between patients with a slightly and highly elevated soluble IL-2 receptor level (median cutoff, 772.0 U/mL; AUC, 0.78).

Iris G. van der Sar, MD, the lead author of the study, said, “Currently, diagnosis of sarcoidosis is challenging due to great differences in clinical presentation often requiring invasive diagnostic procedures such as biopsies. The accuracy of eNose technology is much higher than for other diagnostic tests used in clinical practice for sarcoidosis patients. Building a diagnostic algorithm will allow doctors to use the eNose technology in clinical decision-making in the future.”

The authors concluded that their study showed a reliable and accurate differentiation of patients with sarcoidosis from patients with ILD and healthy control subjects, based on eNose data. The results confirm the potential of eNose technology as a noninvasive diagnostic tool to obtain an early, accurate sarcoidosis diagnosis and reduce the number of invasive diagnostic procedures in the diagnostic trajectory. The study was published on March 1, 2022 in the journal Chest.

Related Links:
Erasmus Medical Center 
Breathomix 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
H.pylori Test
Humasis H.pylori Card

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.