LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electronic Nose Technology May Facilitate Accurate Diagnosis of Sarcoidosis

By LabMedica International staff writers
Posted on 12 Apr 2022
Print article
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)

Sarcoidosis is a granulomatous inflammatory disease without a known cause that can affect roughly any organ. The lungs are involved in the vast majority of patients (89% to 99%). Diagnosis can be challenging because no standardized diagnostic procedure exists. The three major criteria for diagnosis are compatible clinical features, pathology tissue assessment, and exclusion of other granulomatous diagnoses.

Breath biomarkers are increasingly studied in respiratory diseases, as exhaled volatile organic compounds (VOCs) reflect pathophysiological processes in the human body. Techniques such as gas chromatography and mass spectrometry can be used to identify individual VOCs, but are time-consuming and complex. Analysis of a profile of VOCs (a “breathprint”) using electronic nose (eNose) technology will be of added value in clinical practice.

Respiratory Medicine Specialists at the Erasmus Medical Center (Rotterdam, The Netherlands) included in cross-sectional study 252 patients with sarcoidosis (mean age, 53.1 years; 53.2% men), 317 with interstitial lung disease (ILD, mean age, 70 years; 61.5% men), and 48 healthy control subjects (mean age, 36.5 years; 31.3% men). The SpiroNose (Breathomix, Leiden, The Netherlands) was used for exhaled breath analysis. Participants were instructed to perform five tidal breaths, followed by an inhalation to total lung capacity, a 5 second breath hold, and a slow expiration. To explore if breathprints correlate with disease activity, the soluble interleukin-2 receptor (sIL-2R) level was used as a marker for activity. In the laboratory, an sIL-2R value ≤ 550 U/mL was considered normal.

The team reported that eNose distinguished sarcoidosis from control subjects with an area under the curve (AUC) of 1.00 and pulmonary sarcoidosis from other ILD (AUC, 0.87) and hypersensitivity pneumonitis (AUC, 0.88). Exhaled breath of sarcoidosis patients with and without pulmonary involvement, pulmonary fibrosis, multiple organ involvement, pathology-supported diagnosis, and immunosuppressive treatment revealed no distinctive differences. Breath profiles differed between patients with a slightly and highly elevated soluble IL-2 receptor level (median cutoff, 772.0 U/mL; AUC, 0.78).

Iris G. van der Sar, MD, the lead author of the study, said, “Currently, diagnosis of sarcoidosis is challenging due to great differences in clinical presentation often requiring invasive diagnostic procedures such as biopsies. The accuracy of eNose technology is much higher than for other diagnostic tests used in clinical practice for sarcoidosis patients. Building a diagnostic algorithm will allow doctors to use the eNose technology in clinical decision-making in the future.”

The authors concluded that their study showed a reliable and accurate differentiation of patients with sarcoidosis from patients with ILD and healthy control subjects, based on eNose data. The results confirm the potential of eNose technology as a noninvasive diagnostic tool to obtain an early, accurate sarcoidosis diagnosis and reduce the number of invasive diagnostic procedures in the diagnostic trajectory. The study was published on March 1, 2022 in the journal Chest.

Related Links:
Erasmus Medical Center 
Breathomix 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more