We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidic Gated Device for Extraction of Cell-Free DNA Could Help Accurately Diagnose Infections from Small Blood Sample

By LabMedica International staff writers
Posted on 07 Feb 2022
Print article
Illustration
Illustration

Scientists have developed a microfluidic device for the purification of tuberculosis genomic DNA fragments from human-plasma samples.

In the latest breakthrough, scientists from the Shibaura Institute of Technology (SIT Tokyo, Japan) developed an open-channel fluidic device that can efficiently extract and purify DNA fragments from human plasma. This reconfigurable device can prepare and analyze liquid biopsy samples with excellent selectivity and reliability.

In the war against cancer, the first step towards treating them is an accurate diagnosis of the problem. A technique that helps plan a better course of treatment is a biopsy. In recent years, liquid biopsies, which enable the detection of diseases via blood or other bodily fluids instead of solid tissues, have gained popularity over surgical biopsies owing to their non-invasive and straightforward nature.

Liquid biopsies primarily target a molecular marker called “cell-free DNA” (cfDNA), which provides information about the presence of pathogenic DNAs in a sample. Separation and extraction of cfDNA from biofluid samples is a difficult task due to their short lengths and rarity. To carry out any form of analysis, cfDNA has to be extracted and purified, a challenging task owing to their low abundance. A gold-standard cfDNA purification method called “solid-phase extraction” relies on the DNA’s affinity towards a solid phase. However, it fails to yield DNA fragments with less than 200 base pairs (bp) - fundamental units of DNA. Sensitivity towards smaller fragments is a necessity because circulating tumor DNA (ctDNA) or pathogenic DNAs are typically smaller than cfDNA. Therefore, sensitivity towards DNA fragments smaller than 200 bp allows for better detection of diseases.

Newer techniques such as liquid phase extraction (LPE), isotachophoresis (ITP), and electrokinetic trapping of DNA can facilitate such size-independent extractions. However, LPE is very labor-intensive and time-consuming. ITP and electrokinetic trapping, despite their excellent abilities in providing quick and automated extraction and detection of pathogenic DNA e.g., M. tuberculosis (MTB), have not been explored for the selective purification of short cfDNA fragments.

In the latest study, the researchers demonstrated a novel extraction system that combines the powers of both ITP and electrokinetic trapping. The team designed an open microfluidic system that uses transient ITP to detect MTB from human plasma samples. To test the efficacy of the design, the team used the device to purify and enrich MTB-genomic DNA fragments from spiked human plasma. The fluidic system showed a high recovery rate, precise separation, and sensitivity towards short cfDNA fragments of 100-200 bp. It was also able to purify MTB DNA for further qPCR analysis. Further investigation into its separation abilities revealed that treatment of the plasma with the enzyme proteinase K generated plasma peptides. These peptides acted as endogenous spacer molecules and improved the resolution of the extraction method. The designed reconfigurable open microchannel device creates a versatile sample preparation platform for analysis techniques such as PCR and deep sequencing. The team believes that their findings could be used to develop advanced purification systems for recovering nucleic acids from plasma or serum.

“The millimeter-scale fluidic device we developed consists of movable gel gates that allow precise extraction of separate species. It uses ITP for the purification of DNA, and the purified DNA can be easily extracted as a PCR-ready gel strip,” explained Professor Nobuyuki Futai from SIT who led the research team. “Most biopsy sample preparation techniques use marker dyes during DNA purification, which often leads to contamination and decrease in the qPCR signal level. The specific chemistries and sieving effects created by our movable gate design not only ensures the excellent recovery of purified DNA but also eliminates the need for marker dyes. This would, for instance, enable accurate diagnosis of diseases and infections from a small amount of blood sample.”

Related Links:
SIT

Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.