High-Speed Fluorescence Image-Enabled Cell Sorting Tested
|
By LabMedica International staff writers Posted on 03 Feb 2022 |

Image: Schematic diagram of image-enabled cell sorting, developed at BD Biosciences and tested by European Molecular Biology Laboratory (Photo courtesy of BD Bioscience)
Cell sorting through flow cytometry is a technique that enables scientists to identify and sort individual cells based on specific characteristics of each cell in order to study them in more detail, evaluate how each cell may react to a new drug or perform other single cell studies.
By adding imaging to the traditional biomarker identification and quantification, a new technology not only identifies if and how much of a biomarker is present in the cell, but also its location or how it is distributed within the cell. By imaging the distribution of biomarkers with this technology, scientists obtain detailed information about cells that was previously invisible in traditional flow cytometry experiments, which enables them to answer complex biological questions.
Genome Biologists at the European Molecular Biology Laboratory (Heidelberg, Germany) and their colleagues studied regulators of the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway, a protein complex that plays an important role in cellular immunity and stress response. The team measured the activity in this pathway by tracking the location of RelA, a protein that moves from the cytoplasm into the nucleus of the cell upon activation.
The scientists used the new innovation, known as BD CellView Image Technology (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) can capture multiple images of individual cells flowing through the system at a speed of 15,000 cells per second and also adds a previously impossible capability of sorting cells based on detailed microscopic image analysis of individual cells at this speed. Using BD CellView Image Technology, the screen allowed them to identify several novel regulators of this important cellular pathway in a matter of hours, instead of days as would be required using conventional approaches. This result has broad implications for accelerating the pace of genomic and therapeutic discovery.
Lars Steinmetz, PhD, a Professor of Genetics and lead author of the study, said, “For years, scientists have desired a system for cell sorting that would allow them to get a detailed picture of a cell’s inner workings and to isolate those with microscopic phenotypes of interest. This is what BD CellView Image Technology achieves, defining a new standard in cell isolation and characterization. We are excited about applying this technology to high-resolution genomic screening aimed at collecting functional information for every part of the genome. We are also exploring applications for cell-based diagnostics and characterization of cells in health and disease.” The study was published on January 20, 2022 in the journal Science.
Related Links:
European Molecular Biology Laboratory
Becton, Dickinson and Company
By adding imaging to the traditional biomarker identification and quantification, a new technology not only identifies if and how much of a biomarker is present in the cell, but also its location or how it is distributed within the cell. By imaging the distribution of biomarkers with this technology, scientists obtain detailed information about cells that was previously invisible in traditional flow cytometry experiments, which enables them to answer complex biological questions.
Genome Biologists at the European Molecular Biology Laboratory (Heidelberg, Germany) and their colleagues studied regulators of the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway, a protein complex that plays an important role in cellular immunity and stress response. The team measured the activity in this pathway by tracking the location of RelA, a protein that moves from the cytoplasm into the nucleus of the cell upon activation.
The scientists used the new innovation, known as BD CellView Image Technology (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) can capture multiple images of individual cells flowing through the system at a speed of 15,000 cells per second and also adds a previously impossible capability of sorting cells based on detailed microscopic image analysis of individual cells at this speed. Using BD CellView Image Technology, the screen allowed them to identify several novel regulators of this important cellular pathway in a matter of hours, instead of days as would be required using conventional approaches. This result has broad implications for accelerating the pace of genomic and therapeutic discovery.
Lars Steinmetz, PhD, a Professor of Genetics and lead author of the study, said, “For years, scientists have desired a system for cell sorting that would allow them to get a detailed picture of a cell’s inner workings and to isolate those with microscopic phenotypes of interest. This is what BD CellView Image Technology achieves, defining a new standard in cell isolation and characterization. We are excited about applying this technology to high-resolution genomic screening aimed at collecting functional information for every part of the genome. We are also exploring applications for cell-based diagnostics and characterization of cells in health and disease.” The study was published on January 20, 2022 in the journal Science.
Related Links:
European Molecular Biology Laboratory
Becton, Dickinson and Company
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







