We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Serum and Plasma Choline Quantified by Clinical NMR- Analyzer

By LabMedica International staff writers
Posted on 14 Dec 2021
Print article
Image: The Vantera Clinical Analyzer can identify and quantify concentrations of choline using NMR spectroscopy (Photo courtesy of American Association for Clinical Chemistry)
Image: The Vantera Clinical Analyzer can identify and quantify concentrations of choline using NMR spectroscopy (Photo courtesy of American Association for Clinical Chemistry)
Gut microbiome-related metabolites, like trimethylamine-N-oxide (TMAO), betaine and choline are increasingly recognized as contributors to, as well as markers of, cardiometabolic and other chronic diseases. Gut microbiome mediated metabolism of phosphatidylcholine leads to the production of choline, which is then metabolized to either trimethylamine (TMA) or betaine.

Choline is important because it is a component of membrane phospholipids including phosphatidylcholine, the most abundant phospholipid in humans. Choline is also needed for methyl group metabolism, cholinergic neurotransmission as well as lipid and cholesterol transport and metabolism. A high-throughput nuclear magnetic resonance (NMR)–based assay to measure choline has been developed.

Scientists from the Laboratory Corporation of America Holdings (Morrisville, NC, USA) pooled de-identified residual clinical specimens that were pooled to enable the analytical validation studies. In addition, blood draws were performed when appropriate de-identified specimens were not available. Serum or plasma specimens were diluted on board the Vantera Clinical Analyzer (LipoScience Inc, Raleigh, NC, USA) with citrate/phosphate buffer to lower the pH to 5.3. Choline was quantified from the processed spectra using a proprietary multi-step deconvolution algorithm that resolves the choline region into its spectral components. A method comparison study was performed to compare choline concentrations determined by both NMR and liquid chromatography tandem mass spectrometry (LC-MS/MS), 1290 UHPLC system coupled to a 6495B QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA, USA).

The investigators reported that Deming regression analysis comparing choline concentrations by NMR and mass spectrometry (n=28) exhibited a correlation coefficient of 0.998. The limit of quantification were determined to be 7.1 µmol/L in serum and 5.9 µmol/L in plasma. The coefficients of variation (%CV) for intra- and inter-assay precision ranged from 6.2–14.8% (serum) and 5.4–11.3% (plasma). Choline concentrations were lower in EDTA plasma by as much as 38% compared to serum, however, choline was less stable in serum compared to plasma. In a population of apparently healthy adults, the reference interval was <7.1–20.0 µmol/L (serum) and <5.9–13.1 µmol/L (plasma). Linearity was demonstrated well beyond these intervals. No interference was observed for a number of substances tested.

The authors concluded that the newly developed NMR-based assay exhibited good performance characteristics enabling high-throughput quantification of circulating choline for clinical use. While lower choline concentrations were observed in plasma compared to serum, choline was more stable in plasma. The study was published on December 4, 2021 in the journal Clinica Chimica Acta.

Related Links:
Laboratory Corporation of America Holdings
LipoScience Inc
Agilent Technologies


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.