Precise Diagnosis of Mitochondrial Diseases Using Whole Genome Sequencing
By LabMedica International staff writers Posted on 15 Nov 2021 |

Image: Very high magnification micrograph of a muscle biopsy specimen showing ragged red fibers, a finding seen in various types of mitochondrial diseases (Photo courtesy of Wikimedia Commons)
A team of British researchers has demonstrated that a whole genome sequencing approach could identify patients with difficult to diagnose mitochondrial diseases and distinguish them from non-mitochondrial disorders.
Mitochondrial disorders are a common cause of inherited metabolic disease, affecting approximately 1 in 5000 people. They are caused by mutations in genes that primarily affect oxidative phosphorylation and ATP synthesis. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. Mitochondrial diseases are usually detected by analyzing muscle samples, where the presence of these organelles is higher. However, current genetic testing regimes fail to diagnose around 40% of patients, with major implications for patients.
In an effort to improve the diagnostics situation, investigators at the University of Cambridge (United Kingdom) and their colleagues at other institutions conducted a study to determine whether whole genome sequencing (WGS) could be used to define the molecular basis of suspected mitochondrial disorders.
For this study, the investigators performed short read whole genome sequencing on blood samples obtained from 345 patients with suspected mitochondrial disorders who were participants in the 100,000 Genomes Project in England between 2015 and 2018. The 100,000 Genomes Project was set up to embed genomic testing in the British National Health System, discover new disease genes, and make genetic diagnosis available for more patients.
Results obtained during the study revealed a definite or probable genetic diagnosis in 98/319 (31%) families, with an additional six (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis.
The results showed that WGS was a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. If a targeted approach had been taken, these diagnoses would have been missed.
Senior author Dr. Patrick Chinnery, professor of neurology at the University of Cambridge, said, “We recommend that whole genome sequencing should be offered early and before invasive tests such as a muscle biopsy. All that patients would need to do is have a blood test, meaning that this could be offered across the whole country in an equitable way. People would not need to travel long distances to multiple appointments, and they would get their diagnosis much faster.”
Considering that the majority of diagnoses were of non-mitochondrial disorders, Dr. Chinnery said, “These patients were referred because of a suspected mitochondrial disease and the conventional diagnostic tests are specifically for mitochondrial diseases. Unless you consider these other possibilities, you will not diagnose them. Whole genome sequencing is not restricted by that bias.”
The study was published in the November 4, 2021, online edition of the journal BMJ.
Related Links:
University of Cambridge
Mitochondrial disorders are a common cause of inherited metabolic disease, affecting approximately 1 in 5000 people. They are caused by mutations in genes that primarily affect oxidative phosphorylation and ATP synthesis. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. Mitochondrial diseases are usually detected by analyzing muscle samples, where the presence of these organelles is higher. However, current genetic testing regimes fail to diagnose around 40% of patients, with major implications for patients.
In an effort to improve the diagnostics situation, investigators at the University of Cambridge (United Kingdom) and their colleagues at other institutions conducted a study to determine whether whole genome sequencing (WGS) could be used to define the molecular basis of suspected mitochondrial disorders.
For this study, the investigators performed short read whole genome sequencing on blood samples obtained from 345 patients with suspected mitochondrial disorders who were participants in the 100,000 Genomes Project in England between 2015 and 2018. The 100,000 Genomes Project was set up to embed genomic testing in the British National Health System, discover new disease genes, and make genetic diagnosis available for more patients.
Results obtained during the study revealed a definite or probable genetic diagnosis in 98/319 (31%) families, with an additional six (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis.
The results showed that WGS was a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. If a targeted approach had been taken, these diagnoses would have been missed.
Senior author Dr. Patrick Chinnery, professor of neurology at the University of Cambridge, said, “We recommend that whole genome sequencing should be offered early and before invasive tests such as a muscle biopsy. All that patients would need to do is have a blood test, meaning that this could be offered across the whole country in an equitable way. People would not need to travel long distances to multiple appointments, and they would get their diagnosis much faster.”
Considering that the majority of diagnoses were of non-mitochondrial disorders, Dr. Chinnery said, “These patients were referred because of a suspected mitochondrial disease and the conventional diagnostic tests are specifically for mitochondrial diseases. Unless you consider these other possibilities, you will not diagnose them. Whole genome sequencing is not restricted by that bias.”
The study was published in the November 4, 2021, online edition of the journal BMJ.
Related Links:
University of Cambridge
Latest Molecular Diagnostics News
- Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
- First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
- Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
- Single Cell RNA Sequencing Could Enable Non-Invasive Blood Disorder Diagnosis
- Blood Test Identifies HPV-Associated Head and Neck Cancers 10 Years Before Symptoms
- Giant DNA Elements Discovered in Mouth Could Impact Oral Health
- Simple Blood Test Spots Disease Through Metabolic Distortion
- Simple Blood Test Could Streamline Early Alzheimer's Detection
- Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer
- ELISA-Based Test Uses Gynecologic Fluids to Detect Endometrial Cancer
- Comprehensive Tumor Profiling Kit Decentralizes and Standardizes Oncology Testing
- Automated Syndromic Testing System Combines Unparalleled Throughput with Simple Workflow
- Simple Urine Test Assesses Risk of Kidney Cancer Recurrence at Early Stage
- Molecular Map Reveals Previously Hidden Connections Between Diseases
- Novel Urine-Based Test Detects Prostate Cancers
- MRD Testing Can Identify Breast Cancer Survivors at Higher Risk of Recurrence
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more
Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more
Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more
Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
Werfen and VolitionRx Partner to Advance Diagnostic Testing for Antiphospholipid Syndrome
Antiphospholipid syndrome (APS) is a rare autoimmune disorder that causes the immune system to produce abnormal antibodies, making the blood “stickier” than normal. This condition increases the risk of... Read more