We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Precise Diagnosis of Mitochondrial Diseases Using Whole Genome Sequencing

By LabMedica International staff writers
Posted on 15 Nov 2021
Image: Very high magnification micrograph of a muscle biopsy specimen showing ragged red fibers, a finding seen in various types of mitochondrial diseases (Photo courtesy of Wikimedia Commons)
Image: Very high magnification micrograph of a muscle biopsy specimen showing ragged red fibers, a finding seen in various types of mitochondrial diseases (Photo courtesy of Wikimedia Commons)
A team of British researchers has demonstrated that a whole genome sequencing approach could identify patients with difficult to diagnose mitochondrial diseases and distinguish them from non-mitochondrial disorders.

Mitochondrial disorders are a common cause of inherited metabolic disease, affecting approximately 1 in 5000 people. They are caused by mutations in genes that primarily affect oxidative phosphorylation and ATP synthesis. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. Mitochondrial diseases are usually detected by analyzing muscle samples, where the presence of these organelles is higher. However, current genetic testing regimes fail to diagnose around 40% of patients, with major implications for patients.

In an effort to improve the diagnostics situation, investigators at the University of Cambridge (United Kingdom) and their colleagues at other institutions conducted a study to determine whether whole genome sequencing (WGS) could be used to define the molecular basis of suspected mitochondrial disorders.

For this study, the investigators performed short read whole genome sequencing on blood samples obtained from 345 patients with suspected mitochondrial disorders who were participants in the 100,000 Genomes Project in England between 2015 and 2018. The 100,000 Genomes Project was set up to embed genomic testing in the British National Health System, discover new disease genes, and make genetic diagnosis available for more patients.

Results obtained during the study revealed a definite or probable genetic diagnosis in 98/319 (31%) families, with an additional six (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis.

The results showed that WGS was a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. If a targeted approach had been taken, these diagnoses would have been missed.

Senior author Dr. Patrick Chinnery, professor of neurology at the University of Cambridge, said, “We recommend that whole genome sequencing should be offered early and before invasive tests such as a muscle biopsy. All that patients would need to do is have a blood test, meaning that this could be offered across the whole country in an equitable way. People would not need to travel long distances to multiple appointments, and they would get their diagnosis much faster.”

Considering that the majority of diagnoses were of non-mitochondrial disorders, Dr. Chinnery said, “These patients were referred because of a suspected mitochondrial disease and the conventional diagnostic tests are specifically for mitochondrial diseases. Unless you consider these other possibilities, you will not diagnose them. Whole genome sequencing is not restricted by that bias.”

The study was published in the November 4, 2021, online edition of the journal BMJ.

Related Links:
University of Cambridge

New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
Blood Glucose Test Strip
AutoSense Test
Specimen Radiography System
TrueView 200 Pro

Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more