LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Holographic Histopathology Enables Fast, Precise Diagnostics

By LabMedica International staff writers
Posted on 10 May 2021
Image: Schematic of the imaging of pathological tissue 3D structure by combining optical diffraction tomography and automated stitching (Photo courtesy of Korea Advanced Institute of Science and Technology)
Image: Schematic of the imaging of pathological tissue 3D structure by combining optical diffraction tomography and automated stitching (Photo courtesy of Korea Advanced Institute of Science and Technology)
Microscopic assessment of biopsied and resected tissues is central to understanding the underlying pathophysiology and clinical states of many patients. Because most microscopic specimens are translucent to visible light, conventional histological methods achieve image contrast using exogenous labels.

Optical diffraction tomography is a microscopy technique for reconstructing the refractive index of a tissue sample from its scattered field images obtained with various illumination angles. It enables label-free high contrast visualization of transparent samples. The complex scattered field transmitted through the sample is first retrieved using off-axis holography, then the scattered fields obtained with various angle of illuminations are mapped in the Fourier space enabling the reconstruction of the sample refractive index.

Bioscientists at the Korea Advanced Institute of Science and Technology (Daejeon, Republic of Korea) and their colleagues developed label-free volumetric imaging of thick-tissue slides, exploiting refractive index distributions as intrinsic imaging contrast. The present method systematically exploited label-free quantitative phase imaging techniques, volumetric reconstruction of intrinsic refractive index distributions in tissues, and numerical algorithms for the seamless stitching of multiple three-dimensional tomograms and for reducing scattering-induced image distortion.

The scientists demonstrated label-free volumetric imaging of thick tissues with the field of view of 2  mm  ×  1.75  mm  ×  0.2  mm with a spatial resolution of 170  nm  ×  170  nm  ×  1,400  nm. The number of optical modes, calculated as the reconstructed volume divided by the size of the point spread function, was ∼20  giga voxels. They have also demonstrated that different tumor types and a variety of precursor lesions and pathologies can be visualized with the present method.

The team demonstrated the capacity of their novel method by imaging a variety of different cancer pathologies: pancreatic neuroendocrine tumor, intraepithelial neoplasia, and intraductal papillary neoplasm of bile duct. They imaged millimeter-scale, unstained, 100-μm-thick tissues at a subcellular 3D resolution, which enabled the visualization of individual cells and multicellular tissue architectures, comparable to images obtained with traditional chemically processed tissues.

YongKuen Park, PhD, a professor and senior author of the study, said, “The images obtained with the proposed method enabled clear visualization of different morphological features in the various tissues allowing for recognition and diagnosis of precursor lesions and pathologies. We expect optical diffraction tomography to provide faster and more precise diagnostics in histopathology and intraoperative pathology consultations.” The study was published on April 29, 2021 in the journal Advanced Photonics.

Related Links:
Korea Advanced Institute of Science and Technology

Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS

Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more