An Electrochemical Bio-barcode Device for Home Disease Monitoring and Diagnosis
|
By LabMedica International staff writers Posted on 28 Oct 2020 |

Image: A recently developed electrochemical bio‐barcode device paired with a smartphone enables cancer patients to read critical biomarker levels at home in samples of self-drawn blood (Photo courtesy of Georgia Kirkos, McMaster University)
A point-of-care (POC) electrochemical bio‐barcode device and assay system have been developed to enable analysis of protein biomarkers in undiluted and unprocessed human plasma samples.
There is a need for biosensing systems that can be operated at the POC for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity for clinical samples remain a rarity.
To correct this situation investigators at McMaster University (Hamilton, Canada) and Brock University (St. Catharines, Canada) devised an electrochemical bio‐barcode assay (e‐biobarcode assay) that integrated biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.
The design of the e‐biobarcode assay eliminated multistep processing and used a single step for analysis following sample collection into the reagent tube. In use, a drop of blood is added to a vial of reactive solution, and a small amount of the mixture is placed onto a strip and inserted into a reader. In minutes, the device determines the concentration of an antigen.
In the current study, the investigators demonstrated the clinically relevant determination of prostate specific antigen (PSA) - the biomarker for prostate cancer - in undiluted and unprocessed human plasma.
"This is another step toward truly personalized medicine," said senior author Dr. Leyla Soleymani, associate professor of engineering physics at McMaster University. "We are getting away from centralized, lab-based equipment for this kind of testing. This would make monitoring much more accessible and cut down on the number of times patients need to leave home to provide blood samples."
"Once commercialized, this device will be a paradigm shift for cancer diagnosis and prognosis," said contributing author Dr. Feng Li, associate professor of chemistry at Brock University. "Since this device is a lot more accessible and user-friendly than conventional technologies, patients will be more willing to use it, which can improve clinical outcomes and save lives."
The e‐biobarcode assay was described in the October 7, 2020, online edition of the journal Angewandte Chemie.
Related Links:
McMaster University
Brock University
There is a need for biosensing systems that can be operated at the POC for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity for clinical samples remain a rarity.
To correct this situation investigators at McMaster University (Hamilton, Canada) and Brock University (St. Catharines, Canada) devised an electrochemical bio‐barcode assay (e‐biobarcode assay) that integrated biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.
The design of the e‐biobarcode assay eliminated multistep processing and used a single step for analysis following sample collection into the reagent tube. In use, a drop of blood is added to a vial of reactive solution, and a small amount of the mixture is placed onto a strip and inserted into a reader. In minutes, the device determines the concentration of an antigen.
In the current study, the investigators demonstrated the clinically relevant determination of prostate specific antigen (PSA) - the biomarker for prostate cancer - in undiluted and unprocessed human plasma.
"This is another step toward truly personalized medicine," said senior author Dr. Leyla Soleymani, associate professor of engineering physics at McMaster University. "We are getting away from centralized, lab-based equipment for this kind of testing. This would make monitoring much more accessible and cut down on the number of times patients need to leave home to provide blood samples."
"Once commercialized, this device will be a paradigm shift for cancer diagnosis and prognosis," said contributing author Dr. Feng Li, associate professor of chemistry at Brock University. "Since this device is a lot more accessible and user-friendly than conventional technologies, patients will be more willing to use it, which can improve clinical outcomes and save lives."
The e‐biobarcode assay was described in the October 7, 2020, online edition of the journal Angewandte Chemie.
Related Links:
McMaster University
Brock University
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








