An Electrochemical Bio-barcode Device for Home Disease Monitoring and Diagnosis
By LabMedica International staff writers Posted on 28 Oct 2020 |

Image: A recently developed electrochemical bio‐barcode device paired with a smartphone enables cancer patients to read critical biomarker levels at home in samples of self-drawn blood (Photo courtesy of Georgia Kirkos, McMaster University)
A point-of-care (POC) electrochemical bio‐barcode device and assay system have been developed to enable analysis of protein biomarkers in undiluted and unprocessed human plasma samples.
There is a need for biosensing systems that can be operated at the POC for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity for clinical samples remain a rarity.
To correct this situation investigators at McMaster University (Hamilton, Canada) and Brock University (St. Catharines, Canada) devised an electrochemical bio‐barcode assay (e‐biobarcode assay) that integrated biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.
The design of the e‐biobarcode assay eliminated multistep processing and used a single step for analysis following sample collection into the reagent tube. In use, a drop of blood is added to a vial of reactive solution, and a small amount of the mixture is placed onto a strip and inserted into a reader. In minutes, the device determines the concentration of an antigen.
In the current study, the investigators demonstrated the clinically relevant determination of prostate specific antigen (PSA) - the biomarker for prostate cancer - in undiluted and unprocessed human plasma.
"This is another step toward truly personalized medicine," said senior author Dr. Leyla Soleymani, associate professor of engineering physics at McMaster University. "We are getting away from centralized, lab-based equipment for this kind of testing. This would make monitoring much more accessible and cut down on the number of times patients need to leave home to provide blood samples."
"Once commercialized, this device will be a paradigm shift for cancer diagnosis and prognosis," said contributing author Dr. Feng Li, associate professor of chemistry at Brock University. "Since this device is a lot more accessible and user-friendly than conventional technologies, patients will be more willing to use it, which can improve clinical outcomes and save lives."
The e‐biobarcode assay was described in the October 7, 2020, online edition of the journal Angewandte Chemie.
Related Links:
McMaster University
Brock University
There is a need for biosensing systems that can be operated at the POC for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity for clinical samples remain a rarity.
To correct this situation investigators at McMaster University (Hamilton, Canada) and Brock University (St. Catharines, Canada) devised an electrochemical bio‐barcode assay (e‐biobarcode assay) that integrated biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.
The design of the e‐biobarcode assay eliminated multistep processing and used a single step for analysis following sample collection into the reagent tube. In use, a drop of blood is added to a vial of reactive solution, and a small amount of the mixture is placed onto a strip and inserted into a reader. In minutes, the device determines the concentration of an antigen.
In the current study, the investigators demonstrated the clinically relevant determination of prostate specific antigen (PSA) - the biomarker for prostate cancer - in undiluted and unprocessed human plasma.
"This is another step toward truly personalized medicine," said senior author Dr. Leyla Soleymani, associate professor of engineering physics at McMaster University. "We are getting away from centralized, lab-based equipment for this kind of testing. This would make monitoring much more accessible and cut down on the number of times patients need to leave home to provide blood samples."
"Once commercialized, this device will be a paradigm shift for cancer diagnosis and prognosis," said contributing author Dr. Feng Li, associate professor of chemistry at Brock University. "Since this device is a lot more accessible and user-friendly than conventional technologies, patients will be more willing to use it, which can improve clinical outcomes and save lives."
The e‐biobarcode assay was described in the October 7, 2020, online edition of the journal Angewandte Chemie.
Related Links:
McMaster University
Brock University
Latest Technology News
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
- New Method Advances AI Reliability with Applications in Medical Diagnostics
- Self-Powered Microneedle Patch Collects Biomarker Samples Without Drawing Blood
- Skin Patch Detects Biomarkers in Interstitial Fluid Without Blood Draws
- Handheld Saliva Test Accurately Detects Breast Cancer
- Cutting-Edge AI Algorithms Enable Early Detection of Prostate Cancer
- New Microfluidic System Enables Early Cancer Diagnosis Using Simple Blood Tests
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more