Single-Cell Analysis Provides New Insights into Mitochondrial Diseases
|
By LabMedica International staff writers Posted on 24 Aug 2020 |

Image: The compact Chromium Controller advanced microfluidics platform enables high-throughput analysis. Each single use chip processes up to eight samples in parallel in less than 20 minutes. (Photo courtesy of 10×Genomics).
Mitochondrial diseases result from failure of mitochondria, specialized compartments within cells that contain their own DNA and produce the energy needed to sustain life. Some of the most challenging mitochondrial disorders arise from mutations in mitochondrial DNA (mtDNA), a high-copy-number genome that is maternally inherited.
These diseases manifest with marked clinical heterogeneity, in part because tissues generally contain a mixture of both non-mutant and mutant mtDNA, a phenomenon called heteroplasmy. Heteroplasmy varies dramatically across family members, tissues, and time and is hypothesized to be shaped by a combination of random drift and selection.
Medical scientists at the Massachusetts General Hospital (MGH, Boston, MA, USA) and their colleagues applied a single-cell genomics technology, mtDNA single-cell assay for transposase-accessible chromatin (ATAC) sequencing, to determine mtDNA heteroplasmy and cell type simultaneously in many thousands of peripheral-blood mononuclear cells (PBMCs) that were obtained from unrelated patients with Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS). The team examined mtDNA within different blood cell types from nine individuals with MELAS, one of the most common forms of mtDNA disease associated with brain dysfunction and stroke-like episodes, with a wide range of severity across patients.
The team obtained samples of venous blood at clinical baseline and purified PBMCs from the patients. They stained cells for viability and applied antihuman CD45 antibodies before fixation and performed fluorescence-activated cell sorting (FACS) to exclude dead and non-leukocyte cells (CD45−). The mtDNA single-cell ATAC sequencing libraries were generated by a 10× Chromium Controller and a modified Chromium Single Cell ATAC Library and Gel Bead Kit protocol (10×Genomics, Pleasanton, CA, USA), which was followed by paired-end sequencing with the use of a NextSeq 500 platform (2× 72-bp reads) (Illumina, San Diego, CA, USA).
By using mtDNA single-cell ATAC sequencing, the team generated high-quality sequencing libraries to simultaneously evaluate cell type and heteroplasmy in thousands of individual cells per patient. Using accessible chromatin signatures derived from nuclear genomic reads, they defined cell states using a latent semantic indexing projection of each patient’s data set onto a single-cell reference map of healthy-donor PBMCs that had been generated by a similar single-cell ATAC sequencing protocol. The analysis revealed especially low levels of heteroplasmy in T cells, which play important roles in killing infected cells, activating other immune cells, and regulating immune responses. They also observed this pattern in six additional patients who had heteroplasmic A3243G without stroke-like episodes.
Melissa A. Walker, MD, PhD, a Pediatric Neurologist and senior author of the study, said, “What makes this study unique is that it is, to our knowledge, the first time anyone has been able to quantify the percentage of disease-causing mitochondrial DNA mutations in thousands of individual cells of different types from the same patient, as well as in multiple patients with inherited mitochondrial disease.” The study was published on August 12, 2020 in the New England Journal of Medicine.
These diseases manifest with marked clinical heterogeneity, in part because tissues generally contain a mixture of both non-mutant and mutant mtDNA, a phenomenon called heteroplasmy. Heteroplasmy varies dramatically across family members, tissues, and time and is hypothesized to be shaped by a combination of random drift and selection.
Medical scientists at the Massachusetts General Hospital (MGH, Boston, MA, USA) and their colleagues applied a single-cell genomics technology, mtDNA single-cell assay for transposase-accessible chromatin (ATAC) sequencing, to determine mtDNA heteroplasmy and cell type simultaneously in many thousands of peripheral-blood mononuclear cells (PBMCs) that were obtained from unrelated patients with Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS). The team examined mtDNA within different blood cell types from nine individuals with MELAS, one of the most common forms of mtDNA disease associated with brain dysfunction and stroke-like episodes, with a wide range of severity across patients.
The team obtained samples of venous blood at clinical baseline and purified PBMCs from the patients. They stained cells for viability and applied antihuman CD45 antibodies before fixation and performed fluorescence-activated cell sorting (FACS) to exclude dead and non-leukocyte cells (CD45−). The mtDNA single-cell ATAC sequencing libraries were generated by a 10× Chromium Controller and a modified Chromium Single Cell ATAC Library and Gel Bead Kit protocol (10×Genomics, Pleasanton, CA, USA), which was followed by paired-end sequencing with the use of a NextSeq 500 platform (2× 72-bp reads) (Illumina, San Diego, CA, USA).
By using mtDNA single-cell ATAC sequencing, the team generated high-quality sequencing libraries to simultaneously evaluate cell type and heteroplasmy in thousands of individual cells per patient. Using accessible chromatin signatures derived from nuclear genomic reads, they defined cell states using a latent semantic indexing projection of each patient’s data set onto a single-cell reference map of healthy-donor PBMCs that had been generated by a similar single-cell ATAC sequencing protocol. The analysis revealed especially low levels of heteroplasmy in T cells, which play important roles in killing infected cells, activating other immune cells, and regulating immune responses. They also observed this pattern in six additional patients who had heteroplasmic A3243G without stroke-like episodes.
Melissa A. Walker, MD, PhD, a Pediatric Neurologist and senior author of the study, said, “What makes this study unique is that it is, to our knowledge, the first time anyone has been able to quantify the percentage of disease-causing mitochondrial DNA mutations in thousands of individual cells of different types from the same patient, as well as in multiple patients with inherited mitochondrial disease.” The study was published on August 12, 2020 in the New England Journal of Medicine.
Latest Pathology News
- Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
- First-Of-Its-Kind Test Identifies Autism Risk at Birth
- AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
- Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
- Fast Label-Free Method Identifies Aggressive Cancer Cells
- New X-Ray Method Promises Advances in Histology
- Single-Cell Profiling Technique Could Guide Early Cancer Detection
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







