Digital Pathology Solution Resolves the Tissue Floater Conundrum
|
By LabMedica International staff writers Posted on 30 Jul 2020 |

Image: The Aperio AT2 is the ideal digital pathology slide scanner for high-throughput clinical laboratories, delivering precise eSlides with low rescan rate (Photo courtesy of Leica Biosystems).
In routine clinical practice, pathologists may encounter extraneous pieces of tissue on glass slides that could be because of contamination from other specimens. These are typically called tissue floaters. The dilemma pathologists often face is whether such a tissue floater truly belongs to the case in question, or if instead it represents a true contaminant from another patient’s sample in which case it should be ignored.
There are currently several measures a pathologist can employ to troubleshoot the tissue floater problem. Akin to forensic analysis, some laboratories have implemented molecular techniques (e.g., DNA fingerprinting for tissue identity testing) to try resolve this problem by dissecting, testing, and then comparing the molecular results of the tissue floater to the adjacent patient sample on the glass slide.
Clinical Pathologists at the University of Michigan (Ann Arbor, MI, USA) and their colleagues demonstrated the feasibility of using an image search tool to resolve the tissue floater conundrum. A glass slide was produced containing two separate hematoxylin and eosin (H&E)-stained tissue floaters. This fabricated slide was digitized along with the two slides containing the original tumors used to create these floaters. These slides were then embedded into a dataset of 2,325 whole slide images comprising a wide variety of H&E stained diagnostic entities. Digital slides were broken up into patches and the patch features converted into barcodes for indexing and easy retrieval. A deep learning-based image search tool was employed to extract features from patches via barcodes, hence enabling image matching to each tissue floater.
All three slides were then entirely digitized at ×40 magnification using an Aperio AT2 whole slide scanner (Leica Biosystems, Richmond, IL, USA). The quality of these digital slides was checked to avoid inclusion of unique identifiers All the slides were then entirely digitized at ×40 magnification using an Aperio AT2 scanner. The quality of these digital slides was checked to avoid inclusion of unique identifiers. These whole slide images (WSIs) included cases from a wide variety of anatomic sites (e.g., colon, brain, thyroid, prostate, breast, kidney, salivary gland, skin, soft tissue, etc.) exhibiting varied diagnostic pathologic entities (i.e., reactive, inflammatory, benign neoplasms, and malignancies).
The scientists reported that there was a very high likelihood of finding a correct tumor match for the queried tissue floater when searching the digital database. Search results repeatedly yielded a correct match within the top three retrieved images. The retrieval accuracy improved when greater proportions of the floater were selected. The time to run a search was completed within several milliseconds. The image search results for matching tissue floaters when using the UPMC 300 WSI pilot dataset showed that the median rank best result for both the bladder and colon tumor was 1 (95% CI =1) when selecting 5% up to 100% of the floater region.
The authors concluded that using an image search tool offers pathologists an additional method to rapidly resolve the tissue floater conundrum, especially for those laboratories that have transitioned to going fully digital for primary diagnosis. The study was published on July 15, 2020 in the journal Archives of Pathology & Laboratory Medicine.
There are currently several measures a pathologist can employ to troubleshoot the tissue floater problem. Akin to forensic analysis, some laboratories have implemented molecular techniques (e.g., DNA fingerprinting for tissue identity testing) to try resolve this problem by dissecting, testing, and then comparing the molecular results of the tissue floater to the adjacent patient sample on the glass slide.
Clinical Pathologists at the University of Michigan (Ann Arbor, MI, USA) and their colleagues demonstrated the feasibility of using an image search tool to resolve the tissue floater conundrum. A glass slide was produced containing two separate hematoxylin and eosin (H&E)-stained tissue floaters. This fabricated slide was digitized along with the two slides containing the original tumors used to create these floaters. These slides were then embedded into a dataset of 2,325 whole slide images comprising a wide variety of H&E stained diagnostic entities. Digital slides were broken up into patches and the patch features converted into barcodes for indexing and easy retrieval. A deep learning-based image search tool was employed to extract features from patches via barcodes, hence enabling image matching to each tissue floater.
All three slides were then entirely digitized at ×40 magnification using an Aperio AT2 whole slide scanner (Leica Biosystems, Richmond, IL, USA). The quality of these digital slides was checked to avoid inclusion of unique identifiers All the slides were then entirely digitized at ×40 magnification using an Aperio AT2 scanner. The quality of these digital slides was checked to avoid inclusion of unique identifiers. These whole slide images (WSIs) included cases from a wide variety of anatomic sites (e.g., colon, brain, thyroid, prostate, breast, kidney, salivary gland, skin, soft tissue, etc.) exhibiting varied diagnostic pathologic entities (i.e., reactive, inflammatory, benign neoplasms, and malignancies).
The scientists reported that there was a very high likelihood of finding a correct tumor match for the queried tissue floater when searching the digital database. Search results repeatedly yielded a correct match within the top three retrieved images. The retrieval accuracy improved when greater proportions of the floater were selected. The time to run a search was completed within several milliseconds. The image search results for matching tissue floaters when using the UPMC 300 WSI pilot dataset showed that the median rank best result for both the bladder and colon tumor was 1 (95% CI =1) when selecting 5% up to 100% of the floater region.
The authors concluded that using an image search tool offers pathologists an additional method to rapidly resolve the tissue floater conundrum, especially for those laboratories that have transitioned to going fully digital for primary diagnosis. The study was published on July 15, 2020 in the journal Archives of Pathology & Laboratory Medicine.
Latest Pathology News
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








