Biomarkers Evaluated for Lung Disease Severity in Cystic Fibrosis
By LabMedica International staff writers Posted on 22 Jun 2020 |

Image: The single gene, Cystic Fibrosis Transmembrane Regulator (CFTR) gene is located on the long arm of chromosome 7, and its mutations cause CF (Photo courtesy of Daryl Isaac).
Cystic fibrosis (CF) is one of the most common life-shortening monogenic disorders amongst European-derived populations currently affecting more than 85,000 patients worldwide. The diagnosis of CF is based on consensus clinical and laboratory criteria.
To confirm a diagnosis of CF, it is necessary to obtain evidence of CF transmembrane conductance regulator (CFTR) dysfunction through the identification of two CFTR gene mutations in trans previously assigned as CF disease causing, and to perform tests showing high chloride concentration in sweat, distinctive transepithelial nasal potential difference (NPD) measurements and/or assessment of CFTR (dys)function in native colonic epithelia ex vivo.
An international team of medical laboratory scientists led by the University of Debrecen (Debrecen, Hungary) have reviewed the methods used to diagnose CF. Monitoring of pulmonary inflammation via peripheral blood biomarkers is the most common strategy that could be analytically standardized and is generally reproducible. The team summarized the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF.
Serum or plasma C-reactive protein (CRP) concentrations as indicators of systemic inflammation in CF have been analyzed and found to be increased in CF. Higher baseline plasma CRP levels (≥5.2 mg/L) were found in adult CF patients who had a more severe disease and were at higher risk for pulmonary exacerbation (PEx). Similarly, serum CRP was among those individual biomarkers, which could effectively differentiate CF children for lung disease severity.
Airway disease is characterized by chronic infection and recurrent inflammation with neutrophil dominance in association with increased production of a number of pro-inflammatory cytokines, such as IL-6, IL-8 and tumor necrosis factor-α (TNF-α). Serum IL-6 separated CF subjects from normal individuals and showed a significant reduction during antibiotic therapy. Similarly, plasma IL-8 monitored antibiotic efficacy by 21 days and indicated the onset of early re-exacerbation. Higher plasma IL-6 and IL-8 concentrations at the time of exacerbation were associated with an increased risk for being a non-responder to antibiotics.
Activated neutrophils produce several proteins under inflammatory conditions, such as NE, myeloperoxidase (MPO), calprotectin, YKL-40, etc., which circulate at a high quantity in CF blood specimens. NE is a ‘destructive’ serine protease impacting extracellular matrix proteins that forms complexes with anti-proteases leading to neutrophil elastase-antiprotease complex (NE-APC). Plasma NE-APC was elevated in persons with CF versus non-CF controls. The effect of repeated antibiotic therapy was significant on serum MPO levels and was thus utilized in assessing therapeutic efficacy in PEx. Recent discovery of new protein (e.g. human epididymis protein) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
The authors concluded that the field of biomarker development is rapidly evolving whereby it is expected that various omics technologies will be utilized together with advanced bioinformatics algorithms in order to grasp the multisystem complexity of CF disease in various stages of its development. The study was published online on May 16, 2020 in the journal Clinica Chimica Acta.
Related Links:
University of Debrecen
To confirm a diagnosis of CF, it is necessary to obtain evidence of CF transmembrane conductance regulator (CFTR) dysfunction through the identification of two CFTR gene mutations in trans previously assigned as CF disease causing, and to perform tests showing high chloride concentration in sweat, distinctive transepithelial nasal potential difference (NPD) measurements and/or assessment of CFTR (dys)function in native colonic epithelia ex vivo.
An international team of medical laboratory scientists led by the University of Debrecen (Debrecen, Hungary) have reviewed the methods used to diagnose CF. Monitoring of pulmonary inflammation via peripheral blood biomarkers is the most common strategy that could be analytically standardized and is generally reproducible. The team summarized the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF.
Serum or plasma C-reactive protein (CRP) concentrations as indicators of systemic inflammation in CF have been analyzed and found to be increased in CF. Higher baseline plasma CRP levels (≥5.2 mg/L) were found in adult CF patients who had a more severe disease and were at higher risk for pulmonary exacerbation (PEx). Similarly, serum CRP was among those individual biomarkers, which could effectively differentiate CF children for lung disease severity.
Airway disease is characterized by chronic infection and recurrent inflammation with neutrophil dominance in association with increased production of a number of pro-inflammatory cytokines, such as IL-6, IL-8 and tumor necrosis factor-α (TNF-α). Serum IL-6 separated CF subjects from normal individuals and showed a significant reduction during antibiotic therapy. Similarly, plasma IL-8 monitored antibiotic efficacy by 21 days and indicated the onset of early re-exacerbation. Higher plasma IL-6 and IL-8 concentrations at the time of exacerbation were associated with an increased risk for being a non-responder to antibiotics.
Activated neutrophils produce several proteins under inflammatory conditions, such as NE, myeloperoxidase (MPO), calprotectin, YKL-40, etc., which circulate at a high quantity in CF blood specimens. NE is a ‘destructive’ serine protease impacting extracellular matrix proteins that forms complexes with anti-proteases leading to neutrophil elastase-antiprotease complex (NE-APC). Plasma NE-APC was elevated in persons with CF versus non-CF controls. The effect of repeated antibiotic therapy was significant on serum MPO levels and was thus utilized in assessing therapeutic efficacy in PEx. Recent discovery of new protein (e.g. human epididymis protein) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
The authors concluded that the field of biomarker development is rapidly evolving whereby it is expected that various omics technologies will be utilized together with advanced bioinformatics algorithms in order to grasp the multisystem complexity of CF disease in various stages of its development. The study was published online on May 16, 2020 in the journal Clinica Chimica Acta.
Related Links:
University of Debrecen
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Molecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more