LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Throughput Isothermal HPV Test Validated

By LabMedica International staff writers
Posted on 10 Mar 2020
Print article
Image: The AmpFire Multiplex Human papillomavirus (HPV) assay for real time fluorescent detection (Photo courtesy of AtilaBiosystems).
Image: The AmpFire Multiplex Human papillomavirus (HPV) assay for real time fluorescent detection (Photo courtesy of AtilaBiosystems).
Human papillomavirus (HPV) is a viral infection that is passed between people through skin-to-skin contact. There are over 100 varieties of HPV, more than 40 of which are passed through sexual contact and can affect the genitals, mouth, or throat.

Some types of HPV are considered high risk because they can cause cancer. HPV testing detects the genetic material (DNA or messenger RNA) of high-risk HPV (hrHPV), primarily to screen for cervical cancer or to determine whether there is a risk of cervical cancer.

A large team of international scientists led by the Memorial Sloan Kettering Cancer Center (New York, NY, USA) performed an analytic validation of the AmpFire Multiplex HPV assays (AtilaBiosystems, Mountain View, CA, USA) on formalin-fixed, paraffin-embedded (FFPE) cervix/vulva and oropharynx diagnostic tissue samples. The AmpFire assay incorporates a novel isothermal multiplex amplification coupled with real-time fluorescent detection to detect and genotype 15 high-risk (HR) HPV genotypes.

The performance of the AmpFire assays in clinical samples was evaluated using 214 FFPE specimens. The international team also evaluated the Atila AmpFire HPV test comparing it to gold-standard testing, the Roche Cobas HPV and LinearArray tests (Risch-Rotkreuz, Switzerland). The team reported that the limits of detection determined by plasmids cloned with HPV genotype-specific sequences were two copies/reaction for HPV16, HPV18, and some HR HPV genotypes, and 20 copies/reaction for the remaining HR HPV genotypes.

The AmpFire assay failed in one clinical specimen for an invalid rate of 0.5%. The AmpFire assay detected HPV in clinical samples with positive percent agreements of 100% for HPV16, 100% for HPV18, and 94.7% for non-16/18 HR HPV, and 100% negative percent agreements for HPV16, HPV18, and non-16/18 HR HPV. Importantly, 53 of the FFPE clinical samples were biopsies of the oropharynx. In the USA, 70% of oropharyngeal cancers are HPV-related and fresh and preserved biopsy samples are frequently tested for HPV.

The authors concluded that qualitative detection agreement was obtained in their reproducibility study. In summary, the Atila AmpFire HPV assay demonstrated excellent analytic sensitivity and specificity for detection and genotyping of 15 HR HPV genotypes. Assay parameters of simple specimen processing, small sample size requirement, rapid turnaround time, and being near instrument-free render it well suited for HPV detection and genotyping in FFPE specimens. The study was published on January 21, 2020 in the Journal of Molecular Diagnostics

Related Links:
Memorial Sloan Kettering Cancer Center
AtilaBiosystems
Roche


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.