Measles Virus Infection Impacts Immune Cells
By LabMedica International staff writers Posted on 26 Nov 2019 |

Image: Colored scanning electron micrograph (SEM) of a B lymphocyte white blood cell (Photo courtesy of the US National Institute of Allergy and Infectious Diseases)
Measles is a disease caused by the highly infectious measles virus (MeV) that results in both viremia and lymphopenia. Measles virus is a highly infectious lymphotropic virus associated with an extended period of immunosuppression after resolution of acute viremia.
Lymphocyte counts recover shortly after the disappearance of measles-associated rash, but immunosuppression can persist for months to years after infection, resulting in increased incidence of secondary infections. Memory B cell clones present before infection are depleted in post-measles samples even after lymphocyte counts had recovered, a change not seen in controls given an influenza vaccination.
An international team of scientists led by the Wellcome Sanger Institute (Cambridge, UK) used targeted sequencing to follow blood samples from more than two-dozen children prior to measles infections and again more than a month after the infections cleared. The sequence data pointed to decline in immune memory cells and B lymphocyte white blood cell diversity following measles infections.
In an effort to untangle the specific immune cell changes involved in the process, the team did isotype-resolved B-cell receptor sequencing to barcode and follow immune cells in peripheral blood samples collected at baseline in 26 unvaccinated children from a study in the Netherlands, and again some 40 to 50 days after their measles virus infections. Using B cell receptor (BCR) sequencing of human peripheral blood lymphocytes, the team extrapolated antibody; naïve B cell and memory B lymphocyte profiles; and other immune patterns, comparing them with those in samples from unvaccinated children who dodged measles infections and with samples from adults who received a trivalent inactivated influenza vaccine.
The investigators identified two immunological consequences from measles underlying immunosuppression: (i) incomplete reconstitution of the naïve B cell pool leading to immunological immaturity and (ii) compromised immune memory to previously encountered pathogens due to depletion of previously expanded B memory clones. The team saw decreased antibody levels and poorer B memory immune cell responses to the influenza H1N1 virus in influenza vaccinated ferrets that had been through a measles-like canine distemper virus infection than in the animals that remained canine distemper virus-free.
The authors concluded that their results show that MeV infection causes changes in naïve and memory B lymphocyte diversity that persist after the resolution of clinical disease and thus contribute to compromised immunity to previous infections or vaccinations. This work highlights the importance of MeV vaccination not only for the control of measles but also for the maintenance of herd immunity to other pathogens, which can be compromised after MeV infection. The study was published on November 1, 2019 in the journal Science Immunology.
Related Links:
Wellcome Sanger Institute
Lymphocyte counts recover shortly after the disappearance of measles-associated rash, but immunosuppression can persist for months to years after infection, resulting in increased incidence of secondary infections. Memory B cell clones present before infection are depleted in post-measles samples even after lymphocyte counts had recovered, a change not seen in controls given an influenza vaccination.
An international team of scientists led by the Wellcome Sanger Institute (Cambridge, UK) used targeted sequencing to follow blood samples from more than two-dozen children prior to measles infections and again more than a month after the infections cleared. The sequence data pointed to decline in immune memory cells and B lymphocyte white blood cell diversity following measles infections.
In an effort to untangle the specific immune cell changes involved in the process, the team did isotype-resolved B-cell receptor sequencing to barcode and follow immune cells in peripheral blood samples collected at baseline in 26 unvaccinated children from a study in the Netherlands, and again some 40 to 50 days after their measles virus infections. Using B cell receptor (BCR) sequencing of human peripheral blood lymphocytes, the team extrapolated antibody; naïve B cell and memory B lymphocyte profiles; and other immune patterns, comparing them with those in samples from unvaccinated children who dodged measles infections and with samples from adults who received a trivalent inactivated influenza vaccine.
The investigators identified two immunological consequences from measles underlying immunosuppression: (i) incomplete reconstitution of the naïve B cell pool leading to immunological immaturity and (ii) compromised immune memory to previously encountered pathogens due to depletion of previously expanded B memory clones. The team saw decreased antibody levels and poorer B memory immune cell responses to the influenza H1N1 virus in influenza vaccinated ferrets that had been through a measles-like canine distemper virus infection than in the animals that remained canine distemper virus-free.
The authors concluded that their results show that MeV infection causes changes in naïve and memory B lymphocyte diversity that persist after the resolution of clinical disease and thus contribute to compromised immunity to previous infections or vaccinations. This work highlights the importance of MeV vaccination not only for the control of measles but also for the maintenance of herd immunity to other pathogens, which can be compromised after MeV infection. The study was published on November 1, 2019 in the journal Science Immunology.
Related Links:
Wellcome Sanger Institute
Latest Immunology News
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
- Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients
- Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more