A Potential Point-of-Care Method for the Diagnosis of Sepsis
By LabMedica International staff writers Posted on 21 Nov 2019 |

Image: Three-dimensional rendering of various types of white blood cells (Photo courtesy of Wikimedia Commons)
As part of the effort to create better methods to detect and treat sepsis, researchers developed a technique that enables measurement of the activation and function of white blood cells.
Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and people with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.
Current testing and diagnostic approaches fail to provide the precise and timely information needed to treat sepsis. To correct this, investigators at Brigham and Women's Hospital (Boston, MA, USA) designed a new method, based on microfluidics, which relies on minute channels to separate 50 microliter samples of peripheral blood into fractions comprising either the larger white blood cells or the smaller red blood cells and other elements of the blood.
The size-based microfluidic method was combined with novel isodielectric separation technology - developed by colleagues at the Massachusetts Institute of Technology (Cambridge, MA) - which measured cellular electrical activity. This method detected changes that occurred when white blood cells became activated and could distinguish patients with and without inflammation, such as in sepsis.
The investigators used the system to assess leukocyte phenotype and function over a period of seven days in serial samples from 18 hospitalized patients with sepsis and 10 healthy subjects.
Results revealed that the sepsis samples had significantly higher levels of CD16dim and CD16− neutrophils and CD16+ “intermediate” monocytes, as well as significantly lower levels of neutrophil-elastase release, O2 production, and phagolysosome formation. Repeated sampling of sepsis patients over seven days showed that leukocyte activation (measured by isodielectric separation) and leukocyte phenotype and function were significantly more predictive of the clinical course than complete-blood-count parameters.
"Our idea was to develop a point-of-care diagnostic test that, instead of focusing on the white blood cell count, would inform us about white blood cell activation state and function," said senior author Dr. Bruce Levy, chief of the division of pulmonary and critical care medicine at Brigham and Women's Hospital. "It has been exciting for us, as translational scientists, to work on a solution with outstanding bioengineer colleagues. Together, we are able to address a truly important clinical problem."
The potential use of the leukocyte function test to diagnose sepsis was described in the November 11, 2019, online edition of the journal Nature Biomedical Engineering.
Related Links:
Brigham and Women's Hospital
Massachusetts Institute of Technology
Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and people with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.
Current testing and diagnostic approaches fail to provide the precise and timely information needed to treat sepsis. To correct this, investigators at Brigham and Women's Hospital (Boston, MA, USA) designed a new method, based on microfluidics, which relies on minute channels to separate 50 microliter samples of peripheral blood into fractions comprising either the larger white blood cells or the smaller red blood cells and other elements of the blood.
The size-based microfluidic method was combined with novel isodielectric separation technology - developed by colleagues at the Massachusetts Institute of Technology (Cambridge, MA) - which measured cellular electrical activity. This method detected changes that occurred when white blood cells became activated and could distinguish patients with and without inflammation, such as in sepsis.
The investigators used the system to assess leukocyte phenotype and function over a period of seven days in serial samples from 18 hospitalized patients with sepsis and 10 healthy subjects.
Results revealed that the sepsis samples had significantly higher levels of CD16dim and CD16− neutrophils and CD16+ “intermediate” monocytes, as well as significantly lower levels of neutrophil-elastase release, O2 production, and phagolysosome formation. Repeated sampling of sepsis patients over seven days showed that leukocyte activation (measured by isodielectric separation) and leukocyte phenotype and function were significantly more predictive of the clinical course than complete-blood-count parameters.
"Our idea was to develop a point-of-care diagnostic test that, instead of focusing on the white blood cell count, would inform us about white blood cell activation state and function," said senior author Dr. Bruce Levy, chief of the division of pulmonary and critical care medicine at Brigham and Women's Hospital. "It has been exciting for us, as translational scientists, to work on a solution with outstanding bioengineer colleagues. Together, we are able to address a truly important clinical problem."
The potential use of the leukocyte function test to diagnose sepsis was described in the November 11, 2019, online edition of the journal Nature Biomedical Engineering.
Related Links:
Brigham and Women's Hospital
Massachusetts Institute of Technology
Latest Molecular Diagnostics News
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
- Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
- mNGS CSF Test Outperforms Traditional Microbiological Testing for Infectious Diseases
- Point-Of-Care Test to Transform Early-Stage Cervical Cancer Diagnosis
- PET/ctDNA-Guided Approach Helps Determine Lymphoma Treatment
- Next-Generation 'Agnostic Diagnostics' to Detect Respiratory Viruses at POC
- First-Ever Test of Cure for Chagas Disease Determines Treatment Effectiveness
- Capsule Sponge Test Could Replace Endoscopies for Monitoring Esophageal Cancer Risk
- Nasal Swab Test Offers Simpler and Less Costly Virus Screening in High-Risk Settings
- DNA Test Accurately Predicts Resistance to Common Chemotherapy Treatments
- Umbilical Cord Blood Test Can Detect Early Sepsis in Preterm Infants
- Simple Blood Test Predicts Cognitive Decline in Alzheimer's Patients
- Molecular Biomarkers Pave Way for New Tests to Diagnose and Predict Breast Cancer
- Portable CRISPR-Based Molecular Technology Brings Highly Accurate Diagnostics to Point of Need
- Palm-Sized Device Detects Disease-Related Genetic Material In 45 Minutes
- Advanced Computational Tool Paves Way for Diagnostic Tests to Detect Hidden Genetic Mutations
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more