Flow Cytometry Improved Updated Spectral Analyzer
|
By LabMedica International staff writers Posted on 31 Oct 2019 |

Image: The Aurora advanced flow cytometry system is now available with five lasers to enable seeing more than 30 colors from a single sample (Photo courtesy of Cytek Biosciences).
Flow cytometry aims to count the number, size, granularity, and other properties of cells in a heterogeneous population. Standard flow cytometry lasers excite certain fluorescent markers (fluorochromes, antibodies, or stains) on a cell as it passes through the beam.
Detectors in the instrument record and quantify the relative amount of light emitted by fluorescent markers in the cell, which the tool presents to scientists through a histogram. However, flow cytometer users can run into a myriad of technical issues, such as dealing with limited sample volumes and lacking enough lasers to excite a target amount of fluorochromes. Each laser also can only excite a certain number of fluorochromes on a cell before inducing spectral overlap.
An updated model of its Aurora flow cytometry system has been released by Cytek Biosciences (Fremont, CA, USA), which offers scientists the ability to multiplex 40 fluorescent biomarkers on a cell in a blood sample for scientific and clinical purposes. The updated Aurora platform uses five optical lasers (ultraviolet, violet, blue, yellow-green, and red) to excite 40 fluorochromes on cellular antibodies, which are then recorded by 64 detectors.
With standard flow cytometry panels, a patient's blood sample must be separated into multiple tubes to identify biomarkers linked to different types of leukemia; however the Aurora platform only needs a single tube of blood to identify the fluorescent antibodies. While scientists still need to run controls prior to running a multicolor tube to measure the different emission spectra recorded by Aurora, they can save the controls in the software and reuse them with the same panel in future tests.
Wenbin Jiang, PhD, CEO of Cytek Biosciences, said, “After chemotherapy, no one really has that many bone marrow samples available for testing and splitting into several different tubes. But because you don't need to split blood samples into several tubes with Aurora, you can have more cells per tube, which leads to more specific results." Dr. Jiang also argued that the updated Aurora system can analyze up to 30,000 to 40,000 cells per second while maintaining a "competitive sensitivity." Flow cytometry platforms on the market currently offer anywhere from 20,000 to 100,000 cells per second, but not always at the sample level of multiplexing.
Steven A. Porcelli, MD, scientific director at the Albert Einstein College of Medicine Flow Cytometry Core (Bronx, NY, USA), said, “Cytek's tool collected light coming out over a wide range of wavelengths for each cell and for each laser that we've used to excite the cell. Instead of giving you a high or low value for a tracer, it allows you to distinguish many different tracers from each other because you create a kind of fingerprint of the wavelengths being emitted.”
Related Links:
Cytek Biosciences
Albert Einstein College of Medicine Flow Cytometry Core
Detectors in the instrument record and quantify the relative amount of light emitted by fluorescent markers in the cell, which the tool presents to scientists through a histogram. However, flow cytometer users can run into a myriad of technical issues, such as dealing with limited sample volumes and lacking enough lasers to excite a target amount of fluorochromes. Each laser also can only excite a certain number of fluorochromes on a cell before inducing spectral overlap.
An updated model of its Aurora flow cytometry system has been released by Cytek Biosciences (Fremont, CA, USA), which offers scientists the ability to multiplex 40 fluorescent biomarkers on a cell in a blood sample for scientific and clinical purposes. The updated Aurora platform uses five optical lasers (ultraviolet, violet, blue, yellow-green, and red) to excite 40 fluorochromes on cellular antibodies, which are then recorded by 64 detectors.
With standard flow cytometry panels, a patient's blood sample must be separated into multiple tubes to identify biomarkers linked to different types of leukemia; however the Aurora platform only needs a single tube of blood to identify the fluorescent antibodies. While scientists still need to run controls prior to running a multicolor tube to measure the different emission spectra recorded by Aurora, they can save the controls in the software and reuse them with the same panel in future tests.
Wenbin Jiang, PhD, CEO of Cytek Biosciences, said, “After chemotherapy, no one really has that many bone marrow samples available for testing and splitting into several different tubes. But because you don't need to split blood samples into several tubes with Aurora, you can have more cells per tube, which leads to more specific results." Dr. Jiang also argued that the updated Aurora system can analyze up to 30,000 to 40,000 cells per second while maintaining a "competitive sensitivity." Flow cytometry platforms on the market currently offer anywhere from 20,000 to 100,000 cells per second, but not always at the sample level of multiplexing.
Steven A. Porcelli, MD, scientific director at the Albert Einstein College of Medicine Flow Cytometry Core (Bronx, NY, USA), said, “Cytek's tool collected light coming out over a wide range of wavelengths for each cell and for each laser that we've used to excite the cell. Instead of giving you a high or low value for a tracer, it allows you to distinguish many different tracers from each other because you create a kind of fingerprint of the wavelengths being emitted.”
Related Links:
Cytek Biosciences
Albert Einstein College of Medicine Flow Cytometry Core
Latest Technology News
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Blood Test Could Detect Infection Exposure History
Every infection leaves a lasting imprint on the immune system, but current diagnostic tools can usually detect exposure to only one pathogen at a time. This makes it difficult to understand a person’s... Read more
Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
Malaria remains the deadliest parasitic disease worldwide, and although it is not endemic in countries such as Spain, imported cases are diagnosed every year in travelers returning from high-risk regions.... Read more
Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Monitoring minimal residual disease (MRD) after bladder cancer treatment is critical because early relapse often occurs before tumors are visible by imaging or cystoscopy. Urine tumor DNA analysis offers... Read more
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







