Flow Cytometry Improved Updated Spectral Analyzer
|
By LabMedica International staff writers Posted on 31 Oct 2019 |

Image: The Aurora advanced flow cytometry system is now available with five lasers to enable seeing more than 30 colors from a single sample (Photo courtesy of Cytek Biosciences).
Flow cytometry aims to count the number, size, granularity, and other properties of cells in a heterogeneous population. Standard flow cytometry lasers excite certain fluorescent markers (fluorochromes, antibodies, or stains) on a cell as it passes through the beam.
Detectors in the instrument record and quantify the relative amount of light emitted by fluorescent markers in the cell, which the tool presents to scientists through a histogram. However, flow cytometer users can run into a myriad of technical issues, such as dealing with limited sample volumes and lacking enough lasers to excite a target amount of fluorochromes. Each laser also can only excite a certain number of fluorochromes on a cell before inducing spectral overlap.
An updated model of its Aurora flow cytometry system has been released by Cytek Biosciences (Fremont, CA, USA), which offers scientists the ability to multiplex 40 fluorescent biomarkers on a cell in a blood sample for scientific and clinical purposes. The updated Aurora platform uses five optical lasers (ultraviolet, violet, blue, yellow-green, and red) to excite 40 fluorochromes on cellular antibodies, which are then recorded by 64 detectors.
With standard flow cytometry panels, a patient's blood sample must be separated into multiple tubes to identify biomarkers linked to different types of leukemia; however the Aurora platform only needs a single tube of blood to identify the fluorescent antibodies. While scientists still need to run controls prior to running a multicolor tube to measure the different emission spectra recorded by Aurora, they can save the controls in the software and reuse them with the same panel in future tests.
Wenbin Jiang, PhD, CEO of Cytek Biosciences, said, “After chemotherapy, no one really has that many bone marrow samples available for testing and splitting into several different tubes. But because you don't need to split blood samples into several tubes with Aurora, you can have more cells per tube, which leads to more specific results." Dr. Jiang also argued that the updated Aurora system can analyze up to 30,000 to 40,000 cells per second while maintaining a "competitive sensitivity." Flow cytometry platforms on the market currently offer anywhere from 20,000 to 100,000 cells per second, but not always at the sample level of multiplexing.
Steven A. Porcelli, MD, scientific director at the Albert Einstein College of Medicine Flow Cytometry Core (Bronx, NY, USA), said, “Cytek's tool collected light coming out over a wide range of wavelengths for each cell and for each laser that we've used to excite the cell. Instead of giving you a high or low value for a tracer, it allows you to distinguish many different tracers from each other because you create a kind of fingerprint of the wavelengths being emitted.”
Related Links:
Cytek Biosciences
Albert Einstein College of Medicine Flow Cytometry Core
Detectors in the instrument record and quantify the relative amount of light emitted by fluorescent markers in the cell, which the tool presents to scientists through a histogram. However, flow cytometer users can run into a myriad of technical issues, such as dealing with limited sample volumes and lacking enough lasers to excite a target amount of fluorochromes. Each laser also can only excite a certain number of fluorochromes on a cell before inducing spectral overlap.
An updated model of its Aurora flow cytometry system has been released by Cytek Biosciences (Fremont, CA, USA), which offers scientists the ability to multiplex 40 fluorescent biomarkers on a cell in a blood sample for scientific and clinical purposes. The updated Aurora platform uses five optical lasers (ultraviolet, violet, blue, yellow-green, and red) to excite 40 fluorochromes on cellular antibodies, which are then recorded by 64 detectors.
With standard flow cytometry panels, a patient's blood sample must be separated into multiple tubes to identify biomarkers linked to different types of leukemia; however the Aurora platform only needs a single tube of blood to identify the fluorescent antibodies. While scientists still need to run controls prior to running a multicolor tube to measure the different emission spectra recorded by Aurora, they can save the controls in the software and reuse them with the same panel in future tests.
Wenbin Jiang, PhD, CEO of Cytek Biosciences, said, “After chemotherapy, no one really has that many bone marrow samples available for testing and splitting into several different tubes. But because you don't need to split blood samples into several tubes with Aurora, you can have more cells per tube, which leads to more specific results." Dr. Jiang also argued that the updated Aurora system can analyze up to 30,000 to 40,000 cells per second while maintaining a "competitive sensitivity." Flow cytometry platforms on the market currently offer anywhere from 20,000 to 100,000 cells per second, but not always at the sample level of multiplexing.
Steven A. Porcelli, MD, scientific director at the Albert Einstein College of Medicine Flow Cytometry Core (Bronx, NY, USA), said, “Cytek's tool collected light coming out over a wide range of wavelengths for each cell and for each laser that we've used to excite the cell. Instead of giving you a high or low value for a tracer, it allows you to distinguish many different tracers from each other because you create a kind of fingerprint of the wavelengths being emitted.”
Related Links:
Cytek Biosciences
Albert Einstein College of Medicine Flow Cytometry Core
Latest Technology News
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
After surgery for muscle-invasive bladder cancer, many patients face uncertainty about whether residual cancer cells remain in their bodies. Now, a new international phase 3 study has demonstrated that... Read more
Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
Kidney-related diseases are alarmingly common: chronic kidney disease (CKD) affects more than one in seven U.S. adults, while about 20% of hospitalized adults are diagnosed with acute kidney injury (AKI).... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
Chronological age tells us how many years we’ve lived, but not how quickly our bodies are ageing. Some people stay healthy well into their 80s or 90s, while others experience decline much earlier.... Read more
AI Tool Detects Cancer in Blood Samples In 10 Minutes
Detecting cancer recurrence or spread often depends on identifying rare tumor cells circulating in the bloodstream — a process known as a liquid biopsy. However, current methods rely on trained specialists... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







