Infrared Spectrometry Method Used for Triage of Brain Cancer Patients
By LabMedica International staff writers Posted on 23 Oct 2019 |

Image: An example of an FTIR spectrometer with an attenuated total reflectance (ATR) attachment (Photo courtesy of Wikimedia Commons).
A team of British researchers has adapted an advanced spectrophotometric method for use in brain cancer testing as a triage tool to speed up the diagnostic process.
Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this scenario.
Towards this end, investigators at the University of Strathclyde (Glasgow, United Kingdom), the spinoff biotechnology company ClinSpec Diagnostics Limited (Glasgow, United Kingdom), and colleagues at other institutions developed instrumentation based on testing blood samples by attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy to differentiate cancer and control patients.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-spectral-resolution data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum. Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation.
The investigators developed disposable sample slides that allowed the rapid preparation and analysis of multiple samples, enabling high-throughput ATR-FTIR spectroscopy optimized for clinical research. Based upon the design of a microscope slide, these optical sample slides contained four sample areas; one for background measurements and three for repeat measurements of a single patient. This device was developed for the triplicate measurement of patient samples with optimized spectral throughput and performance.
The investigators described the transition to this technology for the established application of ATR-FTIR spectroscopy of blood serum for the detection of brain cancer, and the subsequent impact on clinical diagnostics. In the current study, they analyzed samples from a prospective cohort of 104 patients and found that the blood test was able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%, respectively.
Senior author Dr. Matthew J. Baker, reader in pure and applied chemistry at Strathclyde University and CSO at ClinSpec Diagnostics, said, "This is the first publication of data from our clinical feasibility study and it is the first demonstration that our blood test works in the clinic. Earlier detection of brain tumors in the diagnostic pathway brings the potential to significantly improve patient quality of life and survival, whilst also providing savings to the health services."
The clinical feasibility study was published in the October 8, 2019, online edition of the journal Nature Communications.
Related Links:
University of Strathclyde
ClinSpec Diagnostics Limited
Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this scenario.
Towards this end, investigators at the University of Strathclyde (Glasgow, United Kingdom), the spinoff biotechnology company ClinSpec Diagnostics Limited (Glasgow, United Kingdom), and colleagues at other institutions developed instrumentation based on testing blood samples by attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy to differentiate cancer and control patients.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-spectral-resolution data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum. Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation.
The investigators developed disposable sample slides that allowed the rapid preparation and analysis of multiple samples, enabling high-throughput ATR-FTIR spectroscopy optimized for clinical research. Based upon the design of a microscope slide, these optical sample slides contained four sample areas; one for background measurements and three for repeat measurements of a single patient. This device was developed for the triplicate measurement of patient samples with optimized spectral throughput and performance.
The investigators described the transition to this technology for the established application of ATR-FTIR spectroscopy of blood serum for the detection of brain cancer, and the subsequent impact on clinical diagnostics. In the current study, they analyzed samples from a prospective cohort of 104 patients and found that the blood test was able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%, respectively.
Senior author Dr. Matthew J. Baker, reader in pure and applied chemistry at Strathclyde University and CSO at ClinSpec Diagnostics, said, "This is the first publication of data from our clinical feasibility study and it is the first demonstration that our blood test works in the clinic. Earlier detection of brain tumors in the diagnostic pathway brings the potential to significantly improve patient quality of life and survival, whilst also providing savings to the health services."
The clinical feasibility study was published in the October 8, 2019, online edition of the journal Nature Communications.
Related Links:
University of Strathclyde
ClinSpec Diagnostics Limited
Latest Technology News
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
- New Method Advances AI Reliability with Applications in Medical Diagnostics
- Self-Powered Microneedle Patch Collects Biomarker Samples Without Drawing Blood
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
Skin cancer is the most common malignancy worldwide, and accurately assessing tumor invasion or treatment response remains a major clinical challenge. Current imaging methods, such as confocal microscopy... Read more
Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Glioblastoma (GBM) is the most aggressive form of brain cancer, known for rapid growth, recurrence, and resistance to treatment. Understanding how tumors respond to therapy remains challenging since imaging... Read more
High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
Pancreatic neuroendocrine neoplasms (PNENs) are rare cancers that affect hormone-producing cells in the pancreas. Although uncommon, their incidence has been increasing, and surgery remains the only curative option.... Read moreTechnology
view channel
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
Blood processing and storage are vital to healthcare and clinical practice, ensuring safe transfusions and cellular therapies. However, hospitals and laboratories worldwide face challenges in maintaining... Read more