Infrared Spectrometry Method Used for Triage of Brain Cancer Patients
|
By LabMedica International staff writers Posted on 23 Oct 2019 |

Image: An example of an FTIR spectrometer with an attenuated total reflectance (ATR) attachment (Photo courtesy of Wikimedia Commons).
A team of British researchers has adapted an advanced spectrophotometric method for use in brain cancer testing as a triage tool to speed up the diagnostic process.
Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this scenario.
Towards this end, investigators at the University of Strathclyde (Glasgow, United Kingdom), the spinoff biotechnology company ClinSpec Diagnostics Limited (Glasgow, United Kingdom), and colleagues at other institutions developed instrumentation based on testing blood samples by attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy to differentiate cancer and control patients.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-spectral-resolution data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum. Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation.
The investigators developed disposable sample slides that allowed the rapid preparation and analysis of multiple samples, enabling high-throughput ATR-FTIR spectroscopy optimized for clinical research. Based upon the design of a microscope slide, these optical sample slides contained four sample areas; one for background measurements and three for repeat measurements of a single patient. This device was developed for the triplicate measurement of patient samples with optimized spectral throughput and performance.
The investigators described the transition to this technology for the established application of ATR-FTIR spectroscopy of blood serum for the detection of brain cancer, and the subsequent impact on clinical diagnostics. In the current study, they analyzed samples from a prospective cohort of 104 patients and found that the blood test was able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%, respectively.
Senior author Dr. Matthew J. Baker, reader in pure and applied chemistry at Strathclyde University and CSO at ClinSpec Diagnostics, said, "This is the first publication of data from our clinical feasibility study and it is the first demonstration that our blood test works in the clinic. Earlier detection of brain tumors in the diagnostic pathway brings the potential to significantly improve patient quality of life and survival, whilst also providing savings to the health services."
The clinical feasibility study was published in the October 8, 2019, online edition of the journal Nature Communications.
Related Links:
University of Strathclyde
ClinSpec Diagnostics Limited
Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this scenario.
Towards this end, investigators at the University of Strathclyde (Glasgow, United Kingdom), the spinoff biotechnology company ClinSpec Diagnostics Limited (Glasgow, United Kingdom), and colleagues at other institutions developed instrumentation based on testing blood samples by attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy to differentiate cancer and control patients.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-spectral-resolution data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum. Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation.
The investigators developed disposable sample slides that allowed the rapid preparation and analysis of multiple samples, enabling high-throughput ATR-FTIR spectroscopy optimized for clinical research. Based upon the design of a microscope slide, these optical sample slides contained four sample areas; one for background measurements and three for repeat measurements of a single patient. This device was developed for the triplicate measurement of patient samples with optimized spectral throughput and performance.
The investigators described the transition to this technology for the established application of ATR-FTIR spectroscopy of blood serum for the detection of brain cancer, and the subsequent impact on clinical diagnostics. In the current study, they analyzed samples from a prospective cohort of 104 patients and found that the blood test was able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%, respectively.
Senior author Dr. Matthew J. Baker, reader in pure and applied chemistry at Strathclyde University and CSO at ClinSpec Diagnostics, said, "This is the first publication of data from our clinical feasibility study and it is the first demonstration that our blood test works in the clinic. Earlier detection of brain tumors in the diagnostic pathway brings the potential to significantly improve patient quality of life and survival, whilst also providing savings to the health services."
The clinical feasibility study was published in the October 8, 2019, online edition of the journal Nature Communications.
Related Links:
University of Strathclyde
ClinSpec Diagnostics Limited
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channelRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more






 Analyzer.jpg)

