Smartphone-Based Device Used for Influenza Virus Detection
By LabMedica International staff writers Posted on 05 Aug 2019 |

Image: The device without a smartphone (left) and with a smartphone attached (right) (Photo courtesy of Rohan Mehra - Division for Strategic Public Relations).
A simple and inexpensive smartphone-based device was able to detect influenza virus particles in clinical samples with almost 100 times greater sensitivity than commercial rapid influenza diagnostic tests.
Droplet-based digital bioassays enable highly sensitive and quantitative analysis of biomolecules. However, digital bioassays generally require fluorescence microscopy techniques for detection, which are too large, expensive, and slow for point-of-care testing.
Investigators at the University of Tokyo (Japan) recently descibed an alternative method for detection of viruses in clinical samples. For this purpose, they developed a simple smartphone-based mobile imaging platform (23 × 10 cenitmeters × seven centimeters high) for digital point-of-care bioassays.
The device was designed to trap virus particles on a clear surface in microwells of 48 femtoliters capacity illuminated by an LED lamp. When a virus became trapped inside the microwell, the incident light from the LED was redirected upwards into the camera lens, manifesting as a bright pixel in an otherwise dark field.
The investigators used the smartphone device for digital influenza virus counting (DIViC) based on a fluorogenic assay for neuraminidase activity of the virus. Distinct fluorescence spots derived from single virus particles were observed. The number of detected fluorescence spots correlated well against the virus titer, suggesting that high sensitivity and quantification were achieved. On the other hand, the mobile platform detected only about 60% of influenza virus particles that could be identified by conventional fluorescence microscopy. Nonetheless, digital influenza virus counting with the mobile imaging platform still demonstrated 100 times greater sensitivity than could be obtained with a commercial rapid influenza test kit.
"I wanted to produce a useful tool for inaccessible or less-affluent communities that can help in the fight against diseases such as influenza," said first author Dr. Yoshihiro Minagawa, chief researcher in the faculty of engineering at the University of Tokyo. "Diagnosis is a critical factor of disease prevention. Our device paves the way for better access to essential diagnostic tools."
"Given two equal samples containing influenza, our system detected about 60% of the number of viruses as the fluorescence microscope. But it is much faster at doing so and more than adequate to produce good estimates for accurate diagnoses," said Dr. Minagawa. "What is really amazing is that our device is about 100 times more sensitive than a commercial rapid influenza test kit, and it is not just limited to that kind of virus. We also wish to add other biomarkers such as nucleic acids -- like DNA -- to the options of things the device can detect. This way we can maximize its usefulness to those on the front line of disease prevention, helping to save lives."
The smartphone-based virus detector was described in the July 17, 2019, online edition of the journal Lab on a Chip.
Related Links:
University of Tokyo
Droplet-based digital bioassays enable highly sensitive and quantitative analysis of biomolecules. However, digital bioassays generally require fluorescence microscopy techniques for detection, which are too large, expensive, and slow for point-of-care testing.
Investigators at the University of Tokyo (Japan) recently descibed an alternative method for detection of viruses in clinical samples. For this purpose, they developed a simple smartphone-based mobile imaging platform (23 × 10 cenitmeters × seven centimeters high) for digital point-of-care bioassays.
The device was designed to trap virus particles on a clear surface in microwells of 48 femtoliters capacity illuminated by an LED lamp. When a virus became trapped inside the microwell, the incident light from the LED was redirected upwards into the camera lens, manifesting as a bright pixel in an otherwise dark field.
The investigators used the smartphone device for digital influenza virus counting (DIViC) based on a fluorogenic assay for neuraminidase activity of the virus. Distinct fluorescence spots derived from single virus particles were observed. The number of detected fluorescence spots correlated well against the virus titer, suggesting that high sensitivity and quantification were achieved. On the other hand, the mobile platform detected only about 60% of influenza virus particles that could be identified by conventional fluorescence microscopy. Nonetheless, digital influenza virus counting with the mobile imaging platform still demonstrated 100 times greater sensitivity than could be obtained with a commercial rapid influenza test kit.
"I wanted to produce a useful tool for inaccessible or less-affluent communities that can help in the fight against diseases such as influenza," said first author Dr. Yoshihiro Minagawa, chief researcher in the faculty of engineering at the University of Tokyo. "Diagnosis is a critical factor of disease prevention. Our device paves the way for better access to essential diagnostic tools."
"Given two equal samples containing influenza, our system detected about 60% of the number of viruses as the fluorescence microscope. But it is much faster at doing so and more than adequate to produce good estimates for accurate diagnoses," said Dr. Minagawa. "What is really amazing is that our device is about 100 times more sensitive than a commercial rapid influenza test kit, and it is not just limited to that kind of virus. We also wish to add other biomarkers such as nucleic acids -- like DNA -- to the options of things the device can detect. This way we can maximize its usefulness to those on the front line of disease prevention, helping to save lives."
The smartphone-based virus detector was described in the July 17, 2019, online edition of the journal Lab on a Chip.
Related Links:
University of Tokyo
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more