We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Test Uses Glow-in-the-Dark Paper

By LabMedica International staff writers
Posted on 16 Oct 2018
Print article
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
A practicable and reliable way to test for infectious diseases has been found and all that is needed are a special glowing paper strip, a drop of blood and a digital camera.

The test uses fully integrated “sample‐in‐signal‐out” microfluidic paper‐based analytical devices (μPADs) relying on bioluminescence resonance energy transfer (BRET) switches for analyte recognition and colorimetric signal generation.

Scientists from the Eindhoven University of Technology (Eindhoven, the Netherlands) and their colleagues at the Keio University (Kohoku-ku, Japan) developed the devices use BRET‐based antibody sensing proteins integrated into vertically assembled layers of functionalized paper, and their design enables sample volume‐independent and fully reagent‐free operation, including on‐device blood plasma separation. User operation is limited to the application of a single drop (20–30 μL) of sample (serum, whole blood) and the acquisition of a photograph 20 minutes after sample introduction, with no requirement for precise pipetting, liquid handling, or analytical equipment except for a camera.

The color is created thanks to the secret ingredient of the paper strip: a so-called luminous sensor protein. After a droplet of blood comes onto the paper, this protein triggers a reaction in which blue light is produced (known as bioluminescence). An enzyme that also illuminates fireflies and certain fish, for example, plays a role in this. In a second step, the blue light is converted into green light, but here comes the clue: if an antibody binds to the sensor protein, it blocks the second step. A lot of green means few antibodies and, vice versa, less green means more antibodies.

The ratio of blue and green light can be used to derive the concentration of antibodies. By measuring the ratio precisely, they suffer less from problems that other biosensors often have, such as the signal becoming weaker over time. In their prototype, the team successfully tested three antibodies simultaneously, for human immunodeficiency virus (HIV), influenza and dengue fever. Maarten Merkx, PhD, a professor of Bioengineering and a leading author of the study, said, “A biochemical reaction causes the underside of paper to emit blue-green light; the bluer the color, the higher the concentration of antibodies. A digital camera, for example from a mobile phone, is sufficient to determine the exact color and thus the result.” The study was published on August 31, 2018, in the journal Angewandte Chemie International Edition.

Related Links:
Eindhoven University of Technology
Keio University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more