We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Test Uses Glow-in-the-Dark Paper

By LabMedica International staff writers
Posted on 16 Oct 2018
Print article
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
A practicable and reliable way to test for infectious diseases has been found and all that is needed are a special glowing paper strip, a drop of blood and a digital camera.

The test uses fully integrated “sample‐in‐signal‐out” microfluidic paper‐based analytical devices (μPADs) relying on bioluminescence resonance energy transfer (BRET) switches for analyte recognition and colorimetric signal generation.

Scientists from the Eindhoven University of Technology (Eindhoven, the Netherlands) and their colleagues at the Keio University (Kohoku-ku, Japan) developed the devices use BRET‐based antibody sensing proteins integrated into vertically assembled layers of functionalized paper, and their design enables sample volume‐independent and fully reagent‐free operation, including on‐device blood plasma separation. User operation is limited to the application of a single drop (20–30 μL) of sample (serum, whole blood) and the acquisition of a photograph 20 minutes after sample introduction, with no requirement for precise pipetting, liquid handling, or analytical equipment except for a camera.

The color is created thanks to the secret ingredient of the paper strip: a so-called luminous sensor protein. After a droplet of blood comes onto the paper, this protein triggers a reaction in which blue light is produced (known as bioluminescence). An enzyme that also illuminates fireflies and certain fish, for example, plays a role in this. In a second step, the blue light is converted into green light, but here comes the clue: if an antibody binds to the sensor protein, it blocks the second step. A lot of green means few antibodies and, vice versa, less green means more antibodies.

The ratio of blue and green light can be used to derive the concentration of antibodies. By measuring the ratio precisely, they suffer less from problems that other biosensors often have, such as the signal becoming weaker over time. In their prototype, the team successfully tested three antibodies simultaneously, for human immunodeficiency virus (HIV), influenza and dengue fever. Maarten Merkx, PhD, a professor of Bioengineering and a leading author of the study, said, “A biochemical reaction causes the underside of paper to emit blue-green light; the bluer the color, the higher the concentration of antibodies. A digital camera, for example from a mobile phone, is sufficient to determine the exact color and thus the result.” The study was published on August 31, 2018, in the journal Angewandte Chemie International Edition.

Related Links:
Eindhoven University of Technology
Keio University

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Unit-Dose Packaging solution
HLX
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more