Microfluidic Device Brings Single-Cell Technology to Bedside
|
By LabMedica International staff writers Posted on 06 Mar 2018 |

Image: The microfluidic control instrument performing a Drop-seq run (Photo courtesy of the New York Genome Center).
The complex architecture and associated higher-order function of human tissues relies on functionally and molecularly diverse cell populations. Defining the cellular subsets found in pathologic tissues provides insights into disease etiology and treatment options.
Traditional methods such as flow cytometry, which require a priori knowledge of cell type-specific markers, have begun to define this landscape, but fall short in comprehensively identifying cellular states in a tissue, with particular difficulty detecting extremely rare subpopulations.
Scientists at the New York Genome Center (New York, NY, USA) and their colleagues have facilitated broad access to single-cell sequencing by developing a 3D-printed, portable and low-cost microfluidic controller. They adapted this device to perform massively parallel single-cell RNA-seq (Drop-seq), observing metrics and performance that are indistinguishable from a study level Drop-seq setup.
The group used the instrument to profile joint synovial tissue from rheumatoid arthritis (RA) patients. RA is an autoimmune disease that affects 1% of the population and is associated with painful swelling in the joints. The precise cause of RA is undetermined and muddled by the diversity of cells found in the swollen joints of patients. The portability of the controller permitted patient samples to be processed on-site and immediately after surgery, minimizing handling and transport to optimize sample quality. The team collected samples from five RA patients totaling 20,387 cells and looked at the individual gene expression patterns for each cell.
By analyzing the complete dataset and searching for clusters of similar cells, the scientists identified 13 groups, representing both infiltrating immune and inflamed stromal populations. Of particular interest were distinct groups of fibroblasts with strikingly different gene expression patterns. They were able to validate the presence of these multiple groups using BD FACSAria II flow cytometry sorter, and discovered that they exhibited distinct localization patterns with the joint tissue as well. The instrument processes 1 mL of cells at a concentration of 150–200 cells/µL in about 30 minutes, generating over one million droplets at a generation rate of approximately 700 Hz.
Instructions and assembly manuals for the instrument can be found online at the popular microfluidics repository Metafluidics. The 3D-printed custom device, which, along with its electronic and pneumatic components, can be easily obtained and assembled for a total cost of about USD 600, a fraction of the cost of comparable commercial systems. The device occupies a small footprint as well, not much larger than a tissue box.
William Stephenson PhD, a Senior Research Engineer, and lead author of the study, said, “Most commercial microfluidic instruments are very costly; as a result, not every lab has access to exciting technology for single-cell analysis. We designed the instrument to perform droplet microfluidics and in particular Drop-seq, a massively parallel technology for single cell RNA-sequencing.” The study was published on February 23, 2018, in the journal Nature Communications.
Related Links:
New York Genome Center
Traditional methods such as flow cytometry, which require a priori knowledge of cell type-specific markers, have begun to define this landscape, but fall short in comprehensively identifying cellular states in a tissue, with particular difficulty detecting extremely rare subpopulations.
Scientists at the New York Genome Center (New York, NY, USA) and their colleagues have facilitated broad access to single-cell sequencing by developing a 3D-printed, portable and low-cost microfluidic controller. They adapted this device to perform massively parallel single-cell RNA-seq (Drop-seq), observing metrics and performance that are indistinguishable from a study level Drop-seq setup.
The group used the instrument to profile joint synovial tissue from rheumatoid arthritis (RA) patients. RA is an autoimmune disease that affects 1% of the population and is associated with painful swelling in the joints. The precise cause of RA is undetermined and muddled by the diversity of cells found in the swollen joints of patients. The portability of the controller permitted patient samples to be processed on-site and immediately after surgery, minimizing handling and transport to optimize sample quality. The team collected samples from five RA patients totaling 20,387 cells and looked at the individual gene expression patterns for each cell.
By analyzing the complete dataset and searching for clusters of similar cells, the scientists identified 13 groups, representing both infiltrating immune and inflamed stromal populations. Of particular interest were distinct groups of fibroblasts with strikingly different gene expression patterns. They were able to validate the presence of these multiple groups using BD FACSAria II flow cytometry sorter, and discovered that they exhibited distinct localization patterns with the joint tissue as well. The instrument processes 1 mL of cells at a concentration of 150–200 cells/µL in about 30 minutes, generating over one million droplets at a generation rate of approximately 700 Hz.
Instructions and assembly manuals for the instrument can be found online at the popular microfluidics repository Metafluidics. The 3D-printed custom device, which, along with its electronic and pneumatic components, can be easily obtained and assembled for a total cost of about USD 600, a fraction of the cost of comparable commercial systems. The device occupies a small footprint as well, not much larger than a tissue box.
William Stephenson PhD, a Senior Research Engineer, and lead author of the study, said, “Most commercial microfluidic instruments are very costly; as a result, not every lab has access to exciting technology for single-cell analysis. We designed the instrument to perform droplet microfluidics and in particular Drop-seq, a massively parallel technology for single cell RNA-sequencing.” The study was published on February 23, 2018, in the journal Nature Communications.
Related Links:
New York Genome Center
Latest Technology News
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








