Microfluidic Device Brings Single-Cell Technology to Bedside
|
By LabMedica International staff writers Posted on 06 Mar 2018 |

Image: The microfluidic control instrument performing a Drop-seq run (Photo courtesy of the New York Genome Center).
The complex architecture and associated higher-order function of human tissues relies on functionally and molecularly diverse cell populations. Defining the cellular subsets found in pathologic tissues provides insights into disease etiology and treatment options.
Traditional methods such as flow cytometry, which require a priori knowledge of cell type-specific markers, have begun to define this landscape, but fall short in comprehensively identifying cellular states in a tissue, with particular difficulty detecting extremely rare subpopulations.
Scientists at the New York Genome Center (New York, NY, USA) and their colleagues have facilitated broad access to single-cell sequencing by developing a 3D-printed, portable and low-cost microfluidic controller. They adapted this device to perform massively parallel single-cell RNA-seq (Drop-seq), observing metrics and performance that are indistinguishable from a study level Drop-seq setup.
The group used the instrument to profile joint synovial tissue from rheumatoid arthritis (RA) patients. RA is an autoimmune disease that affects 1% of the population and is associated with painful swelling in the joints. The precise cause of RA is undetermined and muddled by the diversity of cells found in the swollen joints of patients. The portability of the controller permitted patient samples to be processed on-site and immediately after surgery, minimizing handling and transport to optimize sample quality. The team collected samples from five RA patients totaling 20,387 cells and looked at the individual gene expression patterns for each cell.
By analyzing the complete dataset and searching for clusters of similar cells, the scientists identified 13 groups, representing both infiltrating immune and inflamed stromal populations. Of particular interest were distinct groups of fibroblasts with strikingly different gene expression patterns. They were able to validate the presence of these multiple groups using BD FACSAria II flow cytometry sorter, and discovered that they exhibited distinct localization patterns with the joint tissue as well. The instrument processes 1 mL of cells at a concentration of 150–200 cells/µL in about 30 minutes, generating over one million droplets at a generation rate of approximately 700 Hz.
Instructions and assembly manuals for the instrument can be found online at the popular microfluidics repository Metafluidics. The 3D-printed custom device, which, along with its electronic and pneumatic components, can be easily obtained and assembled for a total cost of about USD 600, a fraction of the cost of comparable commercial systems. The device occupies a small footprint as well, not much larger than a tissue box.
William Stephenson PhD, a Senior Research Engineer, and lead author of the study, said, “Most commercial microfluidic instruments are very costly; as a result, not every lab has access to exciting technology for single-cell analysis. We designed the instrument to perform droplet microfluidics and in particular Drop-seq, a massively parallel technology for single cell RNA-sequencing.” The study was published on February 23, 2018, in the journal Nature Communications.
Related Links:
New York Genome Center
Traditional methods such as flow cytometry, which require a priori knowledge of cell type-specific markers, have begun to define this landscape, but fall short in comprehensively identifying cellular states in a tissue, with particular difficulty detecting extremely rare subpopulations.
Scientists at the New York Genome Center (New York, NY, USA) and their colleagues have facilitated broad access to single-cell sequencing by developing a 3D-printed, portable and low-cost microfluidic controller. They adapted this device to perform massively parallel single-cell RNA-seq (Drop-seq), observing metrics and performance that are indistinguishable from a study level Drop-seq setup.
The group used the instrument to profile joint synovial tissue from rheumatoid arthritis (RA) patients. RA is an autoimmune disease that affects 1% of the population and is associated with painful swelling in the joints. The precise cause of RA is undetermined and muddled by the diversity of cells found in the swollen joints of patients. The portability of the controller permitted patient samples to be processed on-site and immediately after surgery, minimizing handling and transport to optimize sample quality. The team collected samples from five RA patients totaling 20,387 cells and looked at the individual gene expression patterns for each cell.
By analyzing the complete dataset and searching for clusters of similar cells, the scientists identified 13 groups, representing both infiltrating immune and inflamed stromal populations. Of particular interest were distinct groups of fibroblasts with strikingly different gene expression patterns. They were able to validate the presence of these multiple groups using BD FACSAria II flow cytometry sorter, and discovered that they exhibited distinct localization patterns with the joint tissue as well. The instrument processes 1 mL of cells at a concentration of 150–200 cells/µL in about 30 minutes, generating over one million droplets at a generation rate of approximately 700 Hz.
Instructions and assembly manuals for the instrument can be found online at the popular microfluidics repository Metafluidics. The 3D-printed custom device, which, along with its electronic and pneumatic components, can be easily obtained and assembled for a total cost of about USD 600, a fraction of the cost of comparable commercial systems. The device occupies a small footprint as well, not much larger than a tissue box.
William Stephenson PhD, a Senior Research Engineer, and lead author of the study, said, “Most commercial microfluidic instruments are very costly; as a result, not every lab has access to exciting technology for single-cell analysis. We designed the instrument to perform droplet microfluidics and in particular Drop-seq, a massively parallel technology for single cell RNA-sequencing.” The study was published on February 23, 2018, in the journal Nature Communications.
Related Links:
New York Genome Center
Latest Technology News
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreBlood Test Could Detect Adverse Immunotherapy Effects
Immune checkpoint inhibitors have transformed cancer treatment, but they can also trigger serious immune-related adverse events that damage healthy organs and may become life-threatening if not detected early.... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read more
Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that is notoriously difficult to diagnose in its early stages. Early symptoms often overlap with other neurological... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more




 assay.jpg)



