Genetics Helps Determine Warfarin Dose for Joint Surgery
|
By LabMedica International staff writers Posted on 06 Nov 2017 |
A five-year study – the Genetics Informatics Trial of Warfarin to Prevent Deep Venous Thrombosis (GIFT) – finds that genetic testing can help determine the safest dose of the blood thinner warfarin, with fewer side effects, for patients undergoing joint replacement surgery.
Though a very effective anti-clotting medicine, warfarin is often associated with adverse complications and each patient requires a different dosage. That unique dosing is based in part on an individual's genetics, and there has been great interest in understanding to what extent genetic information can guide how to reach an optimal therapeutic range for each patient. Since 2007, the US Food and Drug Administration (FDA) has included language in its warfarin packaging that encourages use of genetic guidance when available.
In the study, nearly 1,600 patients age 65 and older having an elective hip or knee replacement was randomly assigned to one of two groups. One group (control group) received warfarin dosing based on standard factors such as age, height, and weight. The second group was dosed based on these clinical factors plus genetic variants. Brian F. Gage, MD, MSc, of Washington University in St. Louis (St. Louis, MO, USA), principal investigator for the entire GIFT study, with other researchers created an algorithm that uses an individual's genetics to prescribe a more precise personalized dose of warfarin. The algorithm weighs individual patient characteristics, such as gender, weight, age and race, as well as one's genetics.
The researchers found that when doctors dosed warfarin by including genetic makeup, the numbers of adverse side effects significantly decreased. Compared to patients in the control group, patients who received genetically dosed warfarin had a 27% reduction in complications. Specifically: major bleeding was reduced by 75%; incidence of excessive (> 4) international normalized ratios (INRs) was reduced by about 30%; blood clots occurred 15% less often; and no patients died during the study.
So "we can reduce their risk for adverse outcomes compared to using a standardized approach," said Scott Woller, MD, principal investigator at Intermountain Healthcare Medical Center (Murray, UT, USA), "What's uncertain now is how that observation can be pragmatically adopted clinically to provide cost-effective care."
The international normalized ratio (INR) laboratory test helps assess warfarin's effect, and the desirable INR range for patients after hip or knee replacement is 2-3. The dose that will put a patient in the 2-3 INR therapeutic range can vary greatly: Some patients require just 0.5 mg/day, while others might require 15-20 mg/day.
"If we can identify the person who requires 0.5 mg, we'll start by giving them a low dose and it's less likely we'll overshoot," said Dr. Woller, "Likewise for the patient who requires 20 mg, we'll avoid lower dosing initially: rather, we'd start by giving them significantly more because we know their stable warfarin dose will be higher."
He added that looking at genes responsible for the liver’s metabolism of the drug could identify significant genetic differences. Previous studies have shown how various genetic differences (polymorphisms) affect metabolism of warfarin.
Though genotyping on an individual has historically been expensive, Dr. Woller noted that “The day may come when patients go to the doctor, have their blood pressure taken, and then a cheek swab is used to genotype their whole genome.” The information would be also available in case of future need for genetic testing.
They study, by Gage BF et al, was published September 26, 2017, in the Journal of the American Medical Association (JAMA).
Related Links:
Washington University
Intermountain Healthcare Medical Center
Though a very effective anti-clotting medicine, warfarin is often associated with adverse complications and each patient requires a different dosage. That unique dosing is based in part on an individual's genetics, and there has been great interest in understanding to what extent genetic information can guide how to reach an optimal therapeutic range for each patient. Since 2007, the US Food and Drug Administration (FDA) has included language in its warfarin packaging that encourages use of genetic guidance when available.
In the study, nearly 1,600 patients age 65 and older having an elective hip or knee replacement was randomly assigned to one of two groups. One group (control group) received warfarin dosing based on standard factors such as age, height, and weight. The second group was dosed based on these clinical factors plus genetic variants. Brian F. Gage, MD, MSc, of Washington University in St. Louis (St. Louis, MO, USA), principal investigator for the entire GIFT study, with other researchers created an algorithm that uses an individual's genetics to prescribe a more precise personalized dose of warfarin. The algorithm weighs individual patient characteristics, such as gender, weight, age and race, as well as one's genetics.
The researchers found that when doctors dosed warfarin by including genetic makeup, the numbers of adverse side effects significantly decreased. Compared to patients in the control group, patients who received genetically dosed warfarin had a 27% reduction in complications. Specifically: major bleeding was reduced by 75%; incidence of excessive (> 4) international normalized ratios (INRs) was reduced by about 30%; blood clots occurred 15% less often; and no patients died during the study.
So "we can reduce their risk for adverse outcomes compared to using a standardized approach," said Scott Woller, MD, principal investigator at Intermountain Healthcare Medical Center (Murray, UT, USA), "What's uncertain now is how that observation can be pragmatically adopted clinically to provide cost-effective care."
The international normalized ratio (INR) laboratory test helps assess warfarin's effect, and the desirable INR range for patients after hip or knee replacement is 2-3. The dose that will put a patient in the 2-3 INR therapeutic range can vary greatly: Some patients require just 0.5 mg/day, while others might require 15-20 mg/day.
"If we can identify the person who requires 0.5 mg, we'll start by giving them a low dose and it's less likely we'll overshoot," said Dr. Woller, "Likewise for the patient who requires 20 mg, we'll avoid lower dosing initially: rather, we'd start by giving them significantly more because we know their stable warfarin dose will be higher."
He added that looking at genes responsible for the liver’s metabolism of the drug could identify significant genetic differences. Previous studies have shown how various genetic differences (polymorphisms) affect metabolism of warfarin.
Though genotyping on an individual has historically been expensive, Dr. Woller noted that “The day may come when patients go to the doctor, have their blood pressure taken, and then a cheek swab is used to genotype their whole genome.” The information would be also available in case of future need for genetic testing.
They study, by Gage BF et al, was published September 26, 2017, in the Journal of the American Medical Association (JAMA).
Related Links:
Washington University
Intermountain Healthcare Medical Center
Latest Hematology News
- Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
- Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








