New Markers Revealed for Severe Multiple Sclerosis
|
By LabMedica International staff writers Posted on 03 Oct 2017 |

Image: The Accuri C6 Plus flow cytometer (Photo courtesy of BD Biosciences).
Multiple Sclerosis (MS) is a chronic condition that affects an estimated 2.3 million people worldwide. In MS, the sheath covering nerve fibers in the brain and spinal cord becomes damaged, slowing or blocking electrical signals from the brain reaching the eyes, muscles, and other parts of the body.
Two closely related cytokines, molecules involved in cell communication and movement, have been discovered that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease and this may help in developing a novel treatment to prevent progressive forms of the disease.
A large group of scientists working with those at VA Portland Health Care System (Portland, OR, USA) recruited 117 participants all over the age of 18. One hundred seventy plasma and 474 DNA samples of MS subjects were also received. Participants included subjects with clinically definite or laboratory-supported MS diagnosis according as well as subjects with clinically isolated syndrome (CIS) and 49 health controls (HC) were also enrolled Over 90% of the study participants were of European ancestry.
Plasma macrophage migration inhibitory factor (MIF) concentration was measured by the human MIF Quantikine enzyme-linked immunosorbent assay (ELISA) kit and its related protein, D-dopachrome tautomerase (D-DT) was also measured by an ELISA. The investigators performed real-time polymerase chains reactions (RT-PCR), histology, genotyping, cell surface CD74 measurements, which were analyzed on an Accuri C6 flow cytometer. The scientists used several other technologies to obtain their results.
The team identified the cytokine, MIF, along with its related protein, D-DT, which are associated with progressive MS. These cytokines worsen the disease by increasing inflammation within the central nervous system. They also linked enhanced expression of MIF with a gene variant that occurred more frequently in MS patients with progressive disease particularly in men.
These findings suggest that a simple genetic test could be used to identify MS patients at risk of developing the more severe form of the disease. As medications to halt the disease are under development, the scientists say that such a therapy could be used as part of a precision medicine approach that would be most effective in patients who have the MIF genetic susceptibility.
Richard Bucala, MD, a professor of medicine and co-senior author of the study, said, “The value of this discovery to patients is that there are now approved therapies, as well as new ones in development in the Oregon and Yale labs, which target the MIF pathway and could be directed toward progressive MS. Using a simple genetic test to select patients who might benefit the most from MIF blockers would accelerate drug development by reducing cost, decreasing risks of toxic effects, and providing a genetically tailored, effective treatment.” The study was published on September 18, 2017, in the journal Proceedings of the National Academy of Sciences.
Related Links:
VA Portland Health Care System
Two closely related cytokines, molecules involved in cell communication and movement, have been discovered that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease and this may help in developing a novel treatment to prevent progressive forms of the disease.
A large group of scientists working with those at VA Portland Health Care System (Portland, OR, USA) recruited 117 participants all over the age of 18. One hundred seventy plasma and 474 DNA samples of MS subjects were also received. Participants included subjects with clinically definite or laboratory-supported MS diagnosis according as well as subjects with clinically isolated syndrome (CIS) and 49 health controls (HC) were also enrolled Over 90% of the study participants were of European ancestry.
Plasma macrophage migration inhibitory factor (MIF) concentration was measured by the human MIF Quantikine enzyme-linked immunosorbent assay (ELISA) kit and its related protein, D-dopachrome tautomerase (D-DT) was also measured by an ELISA. The investigators performed real-time polymerase chains reactions (RT-PCR), histology, genotyping, cell surface CD74 measurements, which were analyzed on an Accuri C6 flow cytometer. The scientists used several other technologies to obtain their results.
The team identified the cytokine, MIF, along with its related protein, D-DT, which are associated with progressive MS. These cytokines worsen the disease by increasing inflammation within the central nervous system. They also linked enhanced expression of MIF with a gene variant that occurred more frequently in MS patients with progressive disease particularly in men.
These findings suggest that a simple genetic test could be used to identify MS patients at risk of developing the more severe form of the disease. As medications to halt the disease are under development, the scientists say that such a therapy could be used as part of a precision medicine approach that would be most effective in patients who have the MIF genetic susceptibility.
Richard Bucala, MD, a professor of medicine and co-senior author of the study, said, “The value of this discovery to patients is that there are now approved therapies, as well as new ones in development in the Oregon and Yale labs, which target the MIF pathway and could be directed toward progressive MS. Using a simple genetic test to select patients who might benefit the most from MIF blockers would accelerate drug development by reducing cost, decreasing risks of toxic effects, and providing a genetically tailored, effective treatment.” The study was published on September 18, 2017, in the journal Proceedings of the National Academy of Sciences.
Related Links:
VA Portland Health Care System
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







