Microhole Chip Rapidly Identifies Tumor Cells
|
By LabMedica International staff writers Posted on 22 Jun 2017 |

Image: The microhole chip can be populated with 200,000 single cells, each held in place in separate holes (Photo courtesy of Fraunhofer IBMT).
The higher the concentration of tumor cells in the bloodstream, the greater the risk of metastasis. The number of circulating tumor cells indicates how well a patient is responding to therapy.
A new microhole chip has been developed that enables cells to be identified and characterized reliably within minutes. The conventional method of fluorescence-activated cell sorting (FACS analysis) provides only a rough estimate of the number of tumor cells circulating in the blood.
Scientists at the Fraunhofer Institute for Biomedical Engineering (IBMT, Sulzbach, Germany) recently completed a collaborative project concerning the identification of circulating tumor cells; a two-step cell analysis method was applied. In the first step, suspicious-looking cells were selected using a microscope. In the second step, the selected cells underwent detailed analysis using the more time-intensive method of Raman spectroscopy. This involves exposing the cells to light in a defined frequency range. Tumor cells scatter light in a specific way that allows them to be clearly identified. Raman spectroscopy cannot be used on conventional arrays with a glass or polymer substrate, because these materials interfere with the measurement, but this is no problem for the new IBMT chip and its silicon-nitride substrate.
Another advantage of the new microhole chip is that it can be populated with 200,000 cells, each one in a separate hole, in a matter of minutes. A micropipette is used to remove individual tumor cells from the chip for further analysis. The level of underpressure chosen to hold them in place is too low to cause any damage. Molecular-biology analysis is a useful means of identifying the factors that determine why a specific drug is able to kill tumor cells or has no effect. The new microhole chip has many other possible applications: as a selection system for protein-producing cells, for instance, such as those required to make insulin and other biopharmaceuticals.
Thomas Velten, PhD, whose team developed the microhole chip, said, “Our new microhole chip allows single cells to be picked out of the blood sample, placed on separate holes in the substrate for analysis, and removed individually afterwards. It's easy to select cells because each one has its own specific position in the array, where they are lined up like ducks in a row. Each cell is placed on a hole but cannot slip through it. A slight underpressure is applied to the cells that hold each one in its allotted place by suction.”
Related Links:
Fraunhofer Institute for Biomedical Engineering
A new microhole chip has been developed that enables cells to be identified and characterized reliably within minutes. The conventional method of fluorescence-activated cell sorting (FACS analysis) provides only a rough estimate of the number of tumor cells circulating in the blood.
Scientists at the Fraunhofer Institute for Biomedical Engineering (IBMT, Sulzbach, Germany) recently completed a collaborative project concerning the identification of circulating tumor cells; a two-step cell analysis method was applied. In the first step, suspicious-looking cells were selected using a microscope. In the second step, the selected cells underwent detailed analysis using the more time-intensive method of Raman spectroscopy. This involves exposing the cells to light in a defined frequency range. Tumor cells scatter light in a specific way that allows them to be clearly identified. Raman spectroscopy cannot be used on conventional arrays with a glass or polymer substrate, because these materials interfere with the measurement, but this is no problem for the new IBMT chip and its silicon-nitride substrate.
Another advantage of the new microhole chip is that it can be populated with 200,000 cells, each one in a separate hole, in a matter of minutes. A micropipette is used to remove individual tumor cells from the chip for further analysis. The level of underpressure chosen to hold them in place is too low to cause any damage. Molecular-biology analysis is a useful means of identifying the factors that determine why a specific drug is able to kill tumor cells or has no effect. The new microhole chip has many other possible applications: as a selection system for protein-producing cells, for instance, such as those required to make insulin and other biopharmaceuticals.
Thomas Velten, PhD, whose team developed the microhole chip, said, “Our new microhole chip allows single cells to be picked out of the blood sample, placed on separate holes in the substrate for analysis, and removed individually afterwards. It's easy to select cells because each one has its own specific position in the array, where they are lined up like ducks in a row. Each cell is placed on a hole but cannot slip through it. A slight underpressure is applied to the cells that hold each one in its allotted place by suction.”
Related Links:
Fraunhofer Institute for Biomedical Engineering
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







