Novel Flow Cytometry-Based Method Analyzes Heinz Bodies
By LabMedica International staff writers Posted on 26 Jan 2017 |

Image: Heinz bodies in red blood cells from a patient with Glucose-6-phosphate dehydrogenase deficiency (Photo courtesy of the School of Medicine UC Davis).
Heinz bodies are inclusions within red blood cells (RBCs) that are composed of denatured hemoglobin molecules and are a highly sensitive indicator of in vivo oxidative stress. Heinz body formation has also been reported in chronic liver disease and α-thalassemia patient.
Historically, light microscopes have been used to visualize specially stained Heinz bodies, which can be seen as spherical inclusions at the peripheries of RBCs. However, microscopic examination of Heinz bodies is time-consuming, labor intensive, and of low sensitivity.
Scientists at the Chulalongkorn University and their associates collected whole-blood samples from patients deficient in Glucose-6-phosphate dehydrogenase (G6PD) and healthy volunteers. The study's G6PD-deficient group included patients who had previously been diagnosed. These subjects were apparently healthy and ranged in age from 25 to 45 and none had ever experienced an acute hemolytic crisis or had experienced fever, inflammation, or infection.
Washed RBCs were incubated in the acetylphenylhydrazine solution at 37 °C. After incubating for one hour, the Heinz bodies were counted under a light microscope at ×100. G6PD enzyme activity was determined using the G6PD assay kit. Enzyme activity was determined using a temperature-regulated spectrophotometer by measuring the change in rate in absorbance at 340 nm. RBCs positive for Heinz bodies were examined using a FACSCanto II cytometer.
The investigators found that RBCs treated with acetylphenylhydrazine formed Heinz bodies and emitted a broad spectrum of fluorescence that could be detected by flow cytometry. The maximum emission of fluorescence was observed at 45 minutes after the incubation with acetylphenylhydrazine. In addition, the fluorescence emitted was stable for at least 72 hours. The flow cytometer could detect the RBCs positive for Heinz bodies even if they made up as little as 0.1% of the total RBC population. Furthermore, the percentage and number, respectively, of RBCs positive for Heinz bodies in G6PD-deficient patients and normal donors exhibited a mean ± standard deviation (SD) of 68.9 ± 27.5 versus 50.9 ± 28.6 and 96,014 ± 35,732 cells/μL versus 74,688 ± 36,514 cells/μL.
The author concluded that Heinz bodies induced by acetylphenylhydrazine emit fluorescence, and this fluorescence could be examined using flow cytometry. Their study suggests the potential use of the developed method to investigate the formation of Heinz bodies in clinical samples. The study was published on January 16, 2017, in the International Journal of Laboratory Hematology.
Historically, light microscopes have been used to visualize specially stained Heinz bodies, which can be seen as spherical inclusions at the peripheries of RBCs. However, microscopic examination of Heinz bodies is time-consuming, labor intensive, and of low sensitivity.
Scientists at the Chulalongkorn University and their associates collected whole-blood samples from patients deficient in Glucose-6-phosphate dehydrogenase (G6PD) and healthy volunteers. The study's G6PD-deficient group included patients who had previously been diagnosed. These subjects were apparently healthy and ranged in age from 25 to 45 and none had ever experienced an acute hemolytic crisis or had experienced fever, inflammation, or infection.
Washed RBCs were incubated in the acetylphenylhydrazine solution at 37 °C. After incubating for one hour, the Heinz bodies were counted under a light microscope at ×100. G6PD enzyme activity was determined using the G6PD assay kit. Enzyme activity was determined using a temperature-regulated spectrophotometer by measuring the change in rate in absorbance at 340 nm. RBCs positive for Heinz bodies were examined using a FACSCanto II cytometer.
The investigators found that RBCs treated with acetylphenylhydrazine formed Heinz bodies and emitted a broad spectrum of fluorescence that could be detected by flow cytometry. The maximum emission of fluorescence was observed at 45 minutes after the incubation with acetylphenylhydrazine. In addition, the fluorescence emitted was stable for at least 72 hours. The flow cytometer could detect the RBCs positive for Heinz bodies even if they made up as little as 0.1% of the total RBC population. Furthermore, the percentage and number, respectively, of RBCs positive for Heinz bodies in G6PD-deficient patients and normal donors exhibited a mean ± standard deviation (SD) of 68.9 ± 27.5 versus 50.9 ± 28.6 and 96,014 ± 35,732 cells/μL versus 74,688 ± 36,514 cells/μL.
The author concluded that Heinz bodies induced by acetylphenylhydrazine emit fluorescence, and this fluorescence could be examined using flow cytometry. Their study suggests the potential use of the developed method to investigate the formation of Heinz bodies in clinical samples. The study was published on January 16, 2017, in the International Journal of Laboratory Hematology.
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more