We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Characteristic Chemical Signature Identified for Chronic Fatigue Syndrome

By LabMedica International staff writers
Posted on 15 Sep 2016
Print article
Image: The LC-20A High Performance Liquid Chromatography (UHPLC) system (Photo courtesy of Shimadzu).
Image: The LC-20A High Performance Liquid Chromatography (UHPLC) system (Photo courtesy of Shimadzu).
Chronic fatigue syndrome (CFS) is a multisystem disease that causes long-term pain and disability and it is difficult to diagnose because of its protean symptoms and the lack of a diagnostic laboratory test.

The disease is characterized by profound fatigue and disability lasting for at least six months, episodes of cognitive dysfunction, sleep disturbance, autonomic abnormalities, chronic or intermittent pain syndromes, microbiome abnormalities, cerebral cytokine dysregulation, natural killer cell dysfunction, and other symptoms that are made worse by exertion of any kind.

Scientists at the University Of California San Diego School Of Medicine (San Diego, CA, USA) recruited prospectively patients and controls to their study over a one-year period. Healthy controls were age- and sex-matched volunteers without CFS. The total number of subjects analyzed in this study was 84. This included 23 females and 22 males with CFS and 18 male and 21 female controls.

Targeted, broad-spectrum, chemometric analysis was performed for 612 metabolites from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Samples were analyzed on an AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer (AB SCIEX, Framingham, MA, USA) equipped with a Turbo V electrospray ionization (ESI) source, Shimadzu LC-20A UHPLC system (Shimadzu Corporation, Kyoto, Japan), and a PAL CTC autosampler (CTC Analytics AG, Lake Elmo, MN, USA).

Patients with CFS showed abnormalities in 20 metabolic pathways with 80% of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. The diagnostic accuracy rate exceeded 90%. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% in males using eight metabolites and 96% in females using 13 metabolites.

Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology and first author of the study said, “CFS is a very challenging disease. It affects multiple systems of the body. Symptoms vary and are common to many other diseases. There is no diagnostic laboratory test. Patients may spend tens of thousands of dollars and years trying to get a correct diagnosis. Despite the heterogeneity of CFS, the diversity of factors that lead to this condition, our findings show that the cellular metabolic response is the same in patients.” The study was published on August 29, 2016, in the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
University Of California San Diego
AB SCIEX
Shimadzu
CTC Analytics

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.