Inherited Genetic Variant Increases Risk of Chronic Lymphocytic Leukemia
|
By LabMedica International staff writers Posted on 01 Sep 2016 |

Image: A blood smear showing Chronic Lymphocytic Leukemia (Photo courtesy of Peter Maslak / ASH).
An inherited genetic variant, associated with an increased risk of developing the most common type of leukemia, helps cancer cells survive has been identified and these findings could lead to new ways to target the disease.
Genome wide association studies (GWAS) which analyze genetic information from both patients and healthy individuals to look for genetic associations with diseases have so far identified 31 areas of the genome where DNA variations are linked with an increased risk of developing chronic lymphocytic leukemia (CLL).
Scientists at The Institute of Cancer Research (London, UK) and their colleagues identified for the first time the role that a specific area of the genome plays in the formation of this leukemia. They found that a single letter DNA sequence variation, known as a single nucleotide polymorphism (SNP), at a specific site in the genome disrupts the activity of a protein called Transcription factor p65 or RELA. This protein is involved in a process of controlled cell death that is a key part of the body's natural defense against disease.
The investigators used published GWAS CLL data to scan 517 cases using HumanCNV370-Duo BeadChips (Illumina, San Diego, CA, USA) with Hap1.2M-Duo Custom array data on 2,698 individuals as controls. Others techniques used included epigenetic annotation, plasmid construction and luciferase assays analyzed on a Fluoroskan Ascent FL plate reader (Thermo Fisher Scientific, Waltham, MA, USA), and gene expression and splicing analysis.
The team found that the particular risk SNP, rs539846-A, interferes with the activity switch of a gene, called 'BCL-2 modifying factor' (BMF), that normally works to produce 'pro-death' signals. This makes it harder for RELA to flip on the activity of the gene and reduces the levels of the signal. This loss of 'pro-death' signal tips the balance towards 'pro-survival', so that the CLL cells can sidestep self-destruction. These findings complement work from recent clinical trials that showed drugs that mimic 'pro-death' proteins by targeting the 'pro-survival' BCL-2 pathway can produce a strong anti-cancer effect in CLL patients who had relapsed after initial treatment. The latest discovery could provide important insight into how these and similar drugs work so that their combined use can be optimized.
Richard S. Houlston, MD, PhD, a Professor of Molecular and Population Genetics, and lead investigator said, “Although many significant risk variants for this type of leukemia have been identified, the biological mechanisms through which these variants affect leukemia development have been less well studied. This study highlights the importance of cell death-inducing proteins such as BMF in controlling CLL development and could help in the design of new drugs to treat this disease.” The study was published on August 11, 2016, in the journal Cell Reports.
Related Links:
The Institute of Cancer Research
Illumina
Thermo Fisher Scientific
Genome wide association studies (GWAS) which analyze genetic information from both patients and healthy individuals to look for genetic associations with diseases have so far identified 31 areas of the genome where DNA variations are linked with an increased risk of developing chronic lymphocytic leukemia (CLL).
Scientists at The Institute of Cancer Research (London, UK) and their colleagues identified for the first time the role that a specific area of the genome plays in the formation of this leukemia. They found that a single letter DNA sequence variation, known as a single nucleotide polymorphism (SNP), at a specific site in the genome disrupts the activity of a protein called Transcription factor p65 or RELA. This protein is involved in a process of controlled cell death that is a key part of the body's natural defense against disease.
The investigators used published GWAS CLL data to scan 517 cases using HumanCNV370-Duo BeadChips (Illumina, San Diego, CA, USA) with Hap1.2M-Duo Custom array data on 2,698 individuals as controls. Others techniques used included epigenetic annotation, plasmid construction and luciferase assays analyzed on a Fluoroskan Ascent FL plate reader (Thermo Fisher Scientific, Waltham, MA, USA), and gene expression and splicing analysis.
The team found that the particular risk SNP, rs539846-A, interferes with the activity switch of a gene, called 'BCL-2 modifying factor' (BMF), that normally works to produce 'pro-death' signals. This makes it harder for RELA to flip on the activity of the gene and reduces the levels of the signal. This loss of 'pro-death' signal tips the balance towards 'pro-survival', so that the CLL cells can sidestep self-destruction. These findings complement work from recent clinical trials that showed drugs that mimic 'pro-death' proteins by targeting the 'pro-survival' BCL-2 pathway can produce a strong anti-cancer effect in CLL patients who had relapsed after initial treatment. The latest discovery could provide important insight into how these and similar drugs work so that their combined use can be optimized.
Richard S. Houlston, MD, PhD, a Professor of Molecular and Population Genetics, and lead investigator said, “Although many significant risk variants for this type of leukemia have been identified, the biological mechanisms through which these variants affect leukemia development have been less well studied. This study highlights the importance of cell death-inducing proteins such as BMF in controlling CLL development and could help in the design of new drugs to treat this disease.” The study was published on August 11, 2016, in the journal Cell Reports.
Related Links:
The Institute of Cancer Research
Illumina
Thermo Fisher Scientific
Latest Hematology News
- Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
- Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








