We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Simplified Assay Quantifies Circulating Activated Protein C

By LabMedica International staff writers
Posted on 24 Aug 2016
Print article
Image: A histopathology of brain tissue showing acute venous thromboembolism of unknown etiology (Photo courtesy of Peter Anderson).
Image: A histopathology of brain tissue showing acute venous thromboembolism of unknown etiology (Photo courtesy of Peter Anderson).
The protein C (PC) anticoagulant pathway plays a crucial role in the regulation of fibrin formation by inactivating the pro-coagulant cofactors factor Va and factor VIIIa.

The physiological relevance of PC in the regulation of blood coagulation arises from the description of increased risk of venous thromboembolism (VTE) associated with both hereditary PC deficiency and low circulating activated protein C (APC) levels. Available assays for circulating levels of APC are either time-consuming or difficult to use in a routine laboratory, or have a detection limit above normal levels.

Scientists at the Instituto de Investigación Sanitaria La Fe (Valencia, Spain) developed a simplified assay that measures both the in vivo free APC and the in vivo APC complexed to PC inhibitor (PCI). They measured APC levels, with both assays, in 339 plasma samples, 165 from patients with venous thromboembolism (VTE) and 174 from healthy individuals.

The PCI antigens were determined and PCI concentration was expressed in nM, assuming a molecular weight for PCI of 57,000 and a concentration of plasma PCI, in pooled normal plasma, of 87.7 nM. APC: PCI complexes were determined by a sandwich enzyme-linked immunosorbent assay (ELISA). Microplates were coated with a monoclonal antibody to PC and complexes were detected with peroxidase-labeled polyclonal antibodies to PCI. APC concentration in the complex is expressed in nM, assuming a molecular weight of APC of 57,000.

The investigators found that the mean APC level in the 339 samples was 0.038 ± 0.010 nM, using a previous assay that measures only the in vivo APC level, and 0.041 ± 0.010 nM with the present new assay. The mean APC level in VTE patients was 0.034 ± 0.009 nM (previous assay) and 0.037 ± 0.009 nM (new assay), significantly lower than those in controls. In both groups there was a significant correlation between the levels obtained by the two assays.

The authors concluded that their results show that both assays are equivalent, and confirm that the APC level is lower in VTE patients than in healthy individuals. Therefore, the new simplified assay, which measures the sum of circulating free APC and APC complexed to PCI, may be used to estimate the level of circulating APC, and will allow its use in routine laboratories. The study was published on August 1, 2016, in the journal Clinica Chimica Acta.

Related Links:
Instituto de Investigación Sanitaria La Fe


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Sekisui Diagnostics UK Ltd.