LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle Drug Delivery Avoids Cancer Cells' Protein Pumps

By LabMedica International staff writers
Posted on 27 Mar 2016
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
A novel nanoparticle delivery system avoids excretion by cancer cells' protein pumps and transports the highly toxic anti-cancer drug doxorubicin (Dox) directly into the nuclei of cancer cells without causing damage to normal tissues or cells.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer.

A team of investigators at the Houston Methodist Research Institute (TX, USA) reported developing a method to avoid the toxic effects of Dox while delivering it in high concentrations to its target inside tumor cells.

In the March 14, 2016, online edition of the journal Nature Biotechnology they described development of an injectable nanoparticle generator (iNPG), a micrometer-sized porous silicon-based particle loaded with a doxorubicin-poly(L-glutamic acid) conjugate (pDox) that was created using a pH-sensitive cleavable linker. These iNPG particles were injected into mice, and accumulated at tumors due to natural tropism and to the enhanced vascular dynamics at the tumor sites.

Once inside the cancer cell, the acidic pH in the vicinity of the nucleus released the drug conjugate from the nanoparticles. Upon release from iNPG, pDox spontaneously formed nanometer-sized particles in aqueous solution. These pDox nanoparticles were transported to the perinuclear region of the cell and cleaved to free the Dox, which killed the cell. The direct delivery to the nucleus avoided excretion of the Dox by cellular drug efflux protein pumps.

Compared to treatment with its individual components or with current therapeutic formulations, iNPG-pDox showed enhanced efficacy in MDA-MB-231 and 4T1 mouse models of metastatic breast cancer, including functional cures in 40%–50% of treated mice. These animals remained in remission for at least eight months, which is equivalent to about 24 years of long-term survival following metastatic disease for humans.

"This may sound like science fiction, like we have penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do," said contributing author Dr. Mauro Ferrari, CEO of the Houston Methodist Research Institute. "If this research bears out in humans, and we see even a fraction of this survival time, we are still talking about dramatically extending life for many years. That is essentially providing a cure in a patient population that is now being told there is none."

Related Links:

Houston Methodist Research Institute


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more