We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle Drug Delivery Avoids Cancer Cells' Protein Pumps

By LabMedica International staff writers
Posted on 27 Mar 2016
Print article
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
A novel nanoparticle delivery system avoids excretion by cancer cells' protein pumps and transports the highly toxic anti-cancer drug doxorubicin (Dox) directly into the nuclei of cancer cells without causing damage to normal tissues or cells.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer.

A team of investigators at the Houston Methodist Research Institute (TX, USA) reported developing a method to avoid the toxic effects of Dox while delivering it in high concentrations to its target inside tumor cells.

In the March 14, 2016, online edition of the journal Nature Biotechnology they described development of an injectable nanoparticle generator (iNPG), a micrometer-sized porous silicon-based particle loaded with a doxorubicin-poly(L-glutamic acid) conjugate (pDox) that was created using a pH-sensitive cleavable linker. These iNPG particles were injected into mice, and accumulated at tumors due to natural tropism and to the enhanced vascular dynamics at the tumor sites.

Once inside the cancer cell, the acidic pH in the vicinity of the nucleus released the drug conjugate from the nanoparticles. Upon release from iNPG, pDox spontaneously formed nanometer-sized particles in aqueous solution. These pDox nanoparticles were transported to the perinuclear region of the cell and cleaved to free the Dox, which killed the cell. The direct delivery to the nucleus avoided excretion of the Dox by cellular drug efflux protein pumps.

Compared to treatment with its individual components or with current therapeutic formulations, iNPG-pDox showed enhanced efficacy in MDA-MB-231 and 4T1 mouse models of metastatic breast cancer, including functional cures in 40%–50% of treated mice. These animals remained in remission for at least eight months, which is equivalent to about 24 years of long-term survival following metastatic disease for humans.

"This may sound like science fiction, like we have penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do," said contributing author Dr. Mauro Ferrari, CEO of the Houston Methodist Research Institute. "If this research bears out in humans, and we see even a fraction of this survival time, we are still talking about dramatically extending life for many years. That is essentially providing a cure in a patient population that is now being told there is none."

Related Links:

Houston Methodist Research Institute


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics