Developing POC Tests for Alzheimer’s to Improve Monitoring and Management of the Disease
|
By LabMedica International staff writers Posted on 22 Mar 2016 |

Image: Illustration of a protocol showing a pathway to develop core-shell nanoparticle/hybrid graphene oxide based multi-functional platform label-free SERS detection of β-amyloid toward developing a portable point-of-care blood test to monitor Alzheimer’s disease progression (Figure courtesy of Teresa Demeritt et al., 2015, ACS Appl. Mater. Interfaces; Copyright ACS-2015).
Toward development of a portable point-of-care (POC) biosensor for Alzheimer’s disease (AD), a new review explores recent advancements in nano-enabling electrochemical beta-amyloid (β-A) -sensing technologies. A simple, rapid POC biomarker test could greatly improve AD management and personalized treatment, also in developing countries.
The authors of the review, from the College of Medicine at Florida International University (Miami, FL, USA), are taking a new approach to diagnosing AD: measuring β-A in the blood with a POC test. AD is caused by high levels of β-A in the brain that lead to degeneration of brain cells. Various types of scans and immunoassays, such as MRI and ELISA, are available to estimate β-A levels in the brain. But the peptide can also be found at lower levels in blood, making it a useful biomarker for a simple test.
Currently there is no sensitive or inexpensive way to measure β-A levels in blood samples. The authors of the new review plan to change that. “We want to develop a point-of-care system where a small drop of blood plasma can reveal their β-A level immediately so that a doctor can tailor a patient’s therapy immediately,” said lead author Dr. Ajeet Kaushik, “The drugs used to treat AD can have side effects, so it’s better for patients not to overdose. With the right data, doctors can respond quickly to changes in a patient’s brain by reducing or increasing their dose.”
In the review, Dr. Kaushik and colleagues looked at each of the methods available to measure β-A concentration in brain tissue and in blood. None of the existing tests can be done at the bedside and all need special expertise and large samples. They also take a long time to generate a useful result—the main existing test, an ELISA, takes 6–8 hours. In comparison, the cheap, simple biosensor Dr. Kaushik and colleagues describe can measure β-A in the blood at low (pico molar) concentrations in just 30 minutes.
“Even though existing technologies are well established, we need to move towards small sample, high accuracy tests that can be used in all environments, from developed countries to rural settings. Our goal is to develop a test that’s sensitive, small, and affordable,” said Dr. Kaushik. To develop the new biosensor, the team will need many bio-fluid samples taken at different stages of the disease. Finding these samples will be challenging, but the review demonstrates that a biosensor is achievable. Such a test would also “show if and when the disease reaches an untreatable level. In the future we hope a rapid biosensor test for AD will help scientists study disease progression and help clinicians deliver personalized therapy to patients.”
The study, by Kaushik A et al., was published online ahead of print January 28, 2016, in the journal Biosensors and Bioelectronics.
Related Links:
Florida International University
The authors of the review, from the College of Medicine at Florida International University (Miami, FL, USA), are taking a new approach to diagnosing AD: measuring β-A in the blood with a POC test. AD is caused by high levels of β-A in the brain that lead to degeneration of brain cells. Various types of scans and immunoassays, such as MRI and ELISA, are available to estimate β-A levels in the brain. But the peptide can also be found at lower levels in blood, making it a useful biomarker for a simple test.
Currently there is no sensitive or inexpensive way to measure β-A levels in blood samples. The authors of the new review plan to change that. “We want to develop a point-of-care system where a small drop of blood plasma can reveal their β-A level immediately so that a doctor can tailor a patient’s therapy immediately,” said lead author Dr. Ajeet Kaushik, “The drugs used to treat AD can have side effects, so it’s better for patients not to overdose. With the right data, doctors can respond quickly to changes in a patient’s brain by reducing or increasing their dose.”
In the review, Dr. Kaushik and colleagues looked at each of the methods available to measure β-A concentration in brain tissue and in blood. None of the existing tests can be done at the bedside and all need special expertise and large samples. They also take a long time to generate a useful result—the main existing test, an ELISA, takes 6–8 hours. In comparison, the cheap, simple biosensor Dr. Kaushik and colleagues describe can measure β-A in the blood at low (pico molar) concentrations in just 30 minutes.
“Even though existing technologies are well established, we need to move towards small sample, high accuracy tests that can be used in all environments, from developed countries to rural settings. Our goal is to develop a test that’s sensitive, small, and affordable,” said Dr. Kaushik. To develop the new biosensor, the team will need many bio-fluid samples taken at different stages of the disease. Finding these samples will be challenging, but the review demonstrates that a biosensor is achievable. Such a test would also “show if and when the disease reaches an untreatable level. In the future we hope a rapid biosensor test for AD will help scientists study disease progression and help clinicians deliver personalized therapy to patients.”
The study, by Kaushik A et al., was published online ahead of print January 28, 2016, in the journal Biosensors and Bioelectronics.
Related Links:
Florida International University
Latest Pathology News
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
World’s First Biomarker Blood Test to Assess MS Progression
Multiple sclerosis (MS) disease activity is caused by an abnormal immune response that results in damage to the brain and spinal cord. However, there is a lack of reliable tools to measure or predict MS progression.... Read more
Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







