Developing POC Tests for Alzheimer’s to Improve Monitoring and Management of the Disease
|
By LabMedica International staff writers Posted on 22 Mar 2016 |

Image: Illustration of a protocol showing a pathway to develop core-shell nanoparticle/hybrid graphene oxide based multi-functional platform label-free SERS detection of β-amyloid toward developing a portable point-of-care blood test to monitor Alzheimer’s disease progression (Figure courtesy of Teresa Demeritt et al., 2015, ACS Appl. Mater. Interfaces; Copyright ACS-2015).
Toward development of a portable point-of-care (POC) biosensor for Alzheimer’s disease (AD), a new review explores recent advancements in nano-enabling electrochemical beta-amyloid (β-A) -sensing technologies. A simple, rapid POC biomarker test could greatly improve AD management and personalized treatment, also in developing countries.
The authors of the review, from the College of Medicine at Florida International University (Miami, FL, USA), are taking a new approach to diagnosing AD: measuring β-A in the blood with a POC test. AD is caused by high levels of β-A in the brain that lead to degeneration of brain cells. Various types of scans and immunoassays, such as MRI and ELISA, are available to estimate β-A levels in the brain. But the peptide can also be found at lower levels in blood, making it a useful biomarker for a simple test.
Currently there is no sensitive or inexpensive way to measure β-A levels in blood samples. The authors of the new review plan to change that. “We want to develop a point-of-care system where a small drop of blood plasma can reveal their β-A level immediately so that a doctor can tailor a patient’s therapy immediately,” said lead author Dr. Ajeet Kaushik, “The drugs used to treat AD can have side effects, so it’s better for patients not to overdose. With the right data, doctors can respond quickly to changes in a patient’s brain by reducing or increasing their dose.”
In the review, Dr. Kaushik and colleagues looked at each of the methods available to measure β-A concentration in brain tissue and in blood. None of the existing tests can be done at the bedside and all need special expertise and large samples. They also take a long time to generate a useful result—the main existing test, an ELISA, takes 6–8 hours. In comparison, the cheap, simple biosensor Dr. Kaushik and colleagues describe can measure β-A in the blood at low (pico molar) concentrations in just 30 minutes.
“Even though existing technologies are well established, we need to move towards small sample, high accuracy tests that can be used in all environments, from developed countries to rural settings. Our goal is to develop a test that’s sensitive, small, and affordable,” said Dr. Kaushik. To develop the new biosensor, the team will need many bio-fluid samples taken at different stages of the disease. Finding these samples will be challenging, but the review demonstrates that a biosensor is achievable. Such a test would also “show if and when the disease reaches an untreatable level. In the future we hope a rapid biosensor test for AD will help scientists study disease progression and help clinicians deliver personalized therapy to patients.”
The study, by Kaushik A et al., was published online ahead of print January 28, 2016, in the journal Biosensors and Bioelectronics.
Related Links:
Florida International University
The authors of the review, from the College of Medicine at Florida International University (Miami, FL, USA), are taking a new approach to diagnosing AD: measuring β-A in the blood with a POC test. AD is caused by high levels of β-A in the brain that lead to degeneration of brain cells. Various types of scans and immunoassays, such as MRI and ELISA, are available to estimate β-A levels in the brain. But the peptide can also be found at lower levels in blood, making it a useful biomarker for a simple test.
Currently there is no sensitive or inexpensive way to measure β-A levels in blood samples. The authors of the new review plan to change that. “We want to develop a point-of-care system where a small drop of blood plasma can reveal their β-A level immediately so that a doctor can tailor a patient’s therapy immediately,” said lead author Dr. Ajeet Kaushik, “The drugs used to treat AD can have side effects, so it’s better for patients not to overdose. With the right data, doctors can respond quickly to changes in a patient’s brain by reducing or increasing their dose.”
In the review, Dr. Kaushik and colleagues looked at each of the methods available to measure β-A concentration in brain tissue and in blood. None of the existing tests can be done at the bedside and all need special expertise and large samples. They also take a long time to generate a useful result—the main existing test, an ELISA, takes 6–8 hours. In comparison, the cheap, simple biosensor Dr. Kaushik and colleagues describe can measure β-A in the blood at low (pico molar) concentrations in just 30 minutes.
“Even though existing technologies are well established, we need to move towards small sample, high accuracy tests that can be used in all environments, from developed countries to rural settings. Our goal is to develop a test that’s sensitive, small, and affordable,” said Dr. Kaushik. To develop the new biosensor, the team will need many bio-fluid samples taken at different stages of the disease. Finding these samples will be challenging, but the review demonstrates that a biosensor is achievable. Such a test would also “show if and when the disease reaches an untreatable level. In the future we hope a rapid biosensor test for AD will help scientists study disease progression and help clinicians deliver personalized therapy to patients.”
The study, by Kaushik A et al., was published online ahead of print January 28, 2016, in the journal Biosensors and Bioelectronics.
Related Links:
Florida International University
Latest Pathology News
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Multiplex PCR Panel Promises Faster Answers for GI Infections
Gastrointestinal infections are a major global health burden, with an estimated 179 million cases of acute gastroenteritis each year in the United States. Caused by diverse pathogens—including bacteria,... Read more
Blood Test Shows Extent of Brain Injury After Stroke
Ischemic stroke is a medical emergency, yet clinicians can only observe brain injury through snapshots provided by CT or MRI scans. These images offer limited insight into how damage evolves over hours... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







