We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Throughput LAMP Assay Targets Benign Tertian Malaria

By LabMedica International staff writers
Posted on 28 Feb 2016
Print article
Image: High-throughput loop-mediated isothermal amplification (HtLAMP) color change associated with hydroxynaphtholblue (HNB); left clear, purple color is negative and right cloudy, blue color positive for Plasmodium vivax (Photo courtesy of QIMR Berghofer Medical Research Institute).
Image: High-throughput loop-mediated isothermal amplification (HtLAMP) color change associated with hydroxynaphtholblue (HNB); left clear, purple color is negative and right cloudy, blue color positive for Plasmodium vivax (Photo courtesy of QIMR Berghofer Medical Research Institute).
Image: Photomicrograph of Plasmodium vivax malaria parasites in a thin blood smear (Photo courtesy of the Pasteur Institute Cambodia).
Image: Photomicrograph of Plasmodium vivax malaria parasites in a thin blood smear (Photo courtesy of the Pasteur Institute Cambodia).
Diagnostic tools for Plasmodium vivax infection, also known as benign tertian malaria, in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests (RDT) but these are unreliable at low parasitemia.

Based on a DNA amplification technology called loop-mediated isothermal amplification (LAMP), an assay has been developed and validated using colorimetric, high throughput assay (HtLAMP) suitable for the detection of P. vivax infection in non-referral settings.

An international team of scientists led by those at the University of Queensland (Brisbane, Australia) developed high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and polymerase chain reaction (PCR) and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

The limit of detection of the HtLAMP-Pv assay was compared with the SD Bioline Pf/Pan RDT (Alere Standard Diagnostics; Yongin-si, Republic of Korea). Blood samples were collected from microscopy positive, symptomatic patients presenting as outpatients and asymptomatic, microscopy negative, community controls as a result of reactive active case detection and these were stored as 20 μL filter paper blood spots. A subset of 149 microscopy positive samples and 112 microscopy negative samples were used to compare the performance of the P. vivax HtLAMP (HtLAMP-Pv), with microscopy and PCR. High throughput (HtLAMP) was performed on a 96-well standard U-bottom microtiter plate. The microtiter plate was then read in an enzyme-linked immunosorbent assay (ELISA) plate reader at 600 nm wavelength to obtain an optical density (OD) reading of each well.

The HtLAMP-Pv assay performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, seven P. malariae, one mixed P. knowlesi/P. vivax, with four excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (61/64), and specificity of 100% (25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, seven of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (5/7) and specificity of 93% (98/105).

The authors concluded that the development and validation of a novel P. vivax-specific LAMP assay which combines a low limit of detection with a high throughput, colorimetric, field applicable molecular diagnostic assay. As such, the HtLAMP assay holds much promise as a diagnostic tool to support malaria elimination efforts in resource-limited P. vivax endemic settings. The study was published on February 12, 2016, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

University of Queensland 
Alere Standard Diagnostics


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.